
IN THIs PART

Chapter 4
Creating a Simple Page

(HTML Overview)

Chapter 5
Marking Up Text

Chapter 6
Adding Links

Chapter 7
Adding Images

Chapter 8
Table Markup

Chapter 9
Forms

Chapter 10
What's up, HTML5?

HtML Markup
for Structure PART II

49

IN THIs CHAPTER

An introduction to
elements and attributes

A step-by-step demo
of marking up

a simple web page

The elements that provide
document structure

A simple stylesheet

Troubleshooting
broken web pages

Part I provided a general overview of the web design environment. Now that
we’ve covered the big concepts, it’s time to roll up our sleeves and start cre-
ating a real web page. It will be an extremely simple page, but even the most
complicated pages are based on the principles described here.

In this chapter, we’ll create a web page step by step so you can get a feel for
what it’s like to mark up a document with HTML tags. The exercises allow
you to work along.

This is what I want you to get out of this chapter:

•	 Get a feel for how markup works, including an understanding of ele-
ments and attributes.

•	 See how browsers interpret HTML documents.

•	 Learn the basic structure of an HTML document.

•	 Get a first glimpse of a style sheet in action.

Don’t worry about learning the specific text elements or style sheet rules
at this point; we’ll get to those in the following chapters. For now, just pay
attention to the process, the overall structure of the document, and the new
terminology.

A Web Page, step by step
You got a look at an HTML document in Chapter 2, How the Web Works,
but now you’ll get to create one yourself and play around with it in the
browser. The demonstration in this chapter has five steps that cover the
basics of page production.

Step 1: Start with content. As a starting point, we’ll write up raw text con-
tent and see what browsers do with it.

Step 2: Give the document structure. You’ll learn about HTML element
syntax and the elements that give a document its structure.

CreatIng a
sImPle Page

CHAPTER 4

(HTML Overview)

Part II, HTML Markup for structure50

Before We Begin, Launch a Text Editor

Step 3: Identify text elements. You’ll describe the content using the appro-
priate text elements and learn about the proper way to use HTML.

Step 4: Add an image. By adding an image to the page, you’ll learn about
attributes and empty elements.

Step 5: Change the page appearance with a style sheet. This exercise gives
you a taste of formatting content with Cascading Style Sheets.

By the time we’re finished, you will have written the source document for
the page shown in Figure 4-1. It’s not very fancy, but you have to start
somewhere.

We’ll be checking our work in a browser frequently throughout this demon-
stration—probably more than you would in real life. But because this is an
introduction to HTML, it is helpful to see the cause and effect of each small
change to the source file along the way.

Before We Begin, Launch a Text Editor
In this chapter and throughout the book, we’ll be writing out HTML docu-
ments by hand, so the first thing we need to do is launch a text editor. The
text editor that is provided with your operating system, such as Notepad
(Windows) or TextEdit (Macintosh), will do for these purposes. Other text
editors are fine as long as you can save plain text files with the .html exten-
sion. If you have a WYSIWYG web-authoring tool such as Dreamweaver, set
it aside for now. I want you to get a feel for marking up a document manu-

ally (see the sidebar “HTML the
Hard Way”).

This section shows how to open
new documents in Notepad and
TextEdit. Even if you’ve used these
programs before, skim through for
some special settings that will make
the exercises go more smoothly.
We’ll start with Notepad; Mac users
can jump ahead.

HTML the Hard Way
I stand by my method of teaching
HTML the old-fashioned way—by
hand. There’s no better way to truly
understand how markup works than
typing it out, one tag at a time, then
opening your page in a browser. It
doesn’t take long to develop a feel
for marking up documents properly.

Although you may choose to use a
web-authoring tool down the line,
understanding HTML will make using
your tools easier and more efficient.
In addition, you will be glad that
you can look at a source file and
understand what you’re seeing. It
is also crucial for troubleshooting
broken pages or fine-tuning the
default formatting that web tools
produce.

And for what it’s worth, professional
web developers tend to mark up
content manually because it gives
them better control over the code
and allows them to make deliberate
decisions about what elements are
used.

Figure 4-1. In this chapter, we’ll write the
source document for this page step by
step.

Before We Begin, Launch a Text Editor

Chapter 4, Creating a simple Page 51

Creating a new document in Notepad (Windows)
These are the steps to creating a new document in Notepad on Windows 7
(Figure 4-2):

1. Open the Start menu and navigate to Notepad (in Accessories). 1

2. Click on Notepad to open a new document window, and you’re ready
to start typing. 2

3. Next, we’ll make the extensions visible. This step is not required to make
HTML documents, but it will help make the file types clearer at a glance.
Select “Folder Options…” from the Tools menu 3 and select the View
tab 4. Find “Hide extensions for known file types” and uncheck that
option. 5 Click OK to save the preference, and the file extensions will
now be visible.

1 Open the Start menu and navigate to Notepad (All Programs > Accessories > Notepad)

2Clicking on Notepad will
open a new document.

3To make the extensions visible go to My Computer > Tools > Folder Options

4
Select the View tab.

5
Find “Hide extensions
for known file types”

and uncheck. Then click
OK to save preference.

Figure 4-2. Creating a new document in Notepad.

n oT e

In Windows 7, hit the ALT key to reveal
the menu to access Tools and Folder
Options. In Windows Vista, it is labeled
"Folder and Search Options."

Part II, HTML Markup for structure52

Before We Begin, Launch a Text Editor

Creating a new document in TextEdit (Mac Os X)
By default, TextEdit creates “rich text” documents, that is, documents that
have hidden style formatting instructions for making text bold, setting font
size, and so on. You can tell that TextEdit is in rich text mode when it has
a formatting toolbar at the top of the window (plain text mode does not).
HTML documents need to be plain text documents, so we’ll need to change
the Format, as shown in this example (Figure 4-3).

1. Use the Finder to look in the Applications folder for TextEdit. When
you’ve found it, double-click the name or icon to launch the application.

2. TextEdit opens a new document. The text-formatting menu at the top
shows that you are in Rich Text mode. Here’s how you change it.

3. Open the Preferences dialog box from the TextEdit menu.

4. There are three settings you need to adjust:

On the “New Document” tab, select “Plain text”.

On the “Open and Save” tab, select “Ignore rich text commands in
HTML files” and turn off “Append ‘.txt’ extensions to plain text files”.

5. When you are done, click the red button in the top-left corner.

6. When you create a new document, the formatting menu will no lon-
ger be there and you can save your text as an HTML document. You
can always convert a document back to rich text by selecting Format
➝	 Make Rich Text when you are not using TextEdit for HTML.

Formatting menu indicates rich text Plain text documents have no menu

Figure 4-3. Launching TextEdit and
choosing Plain Text settings in the
Preferences.

step 1: start with Content

Chapter 4, Creating a simple Page 53

step 1: start with Content
Now that we have our new document, it’s time to get typing. A web page
always starts with content, so that’s where we begin our demonstration.
Exercise 4-1 walks you through entering the raw text content and saving the
document in a new folder.

exercise 4-1 | Entering content
1. Type the content below for the home page into the new document in your text

editor. Copy it exactly as you see it here, keeping the line breaks the same for the
sake of playing along. The raw text for this exercise is available online at www.
learningwebdesign.com/4e/materials/.

Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and dinner fare in hip
atmosphere. The menu changes regularly to highlight the freshest
ingredients.

Catering
You have fun... we’ll handle the cooking. Black Goose Catering
can handle events from snacks for bridge club to elegant corporate
fundraisers.

Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm, Friday and Saturday, 11am to
midnight

2. Select “Save” or “Save as” from the File menu to get the Save As dialog box
(Figure 4-4). The first thing you need to do is create a new folder that will contain
all of the files for the site (in other words, it’s the local root folder).

Windows: Click the folder icon at the top to create the new folder.

Mac: Click the “New Folder” button.

Windows 7 Mac OSX

Naming
Conventions
It is important that you follow these
rules and conventions when naming
your files:

Use proper suffixes for your files.
HTML and XHTML files must end
with .html. Web graphics must
be labeled according to their file
format: .gif, .png, or .jpg (.jpeg is
also acceptable).

Never use character spaces within
filenames. It is common to
use an underline character or
hyphen to visually separate
words within filenames, such as
robbins_bio.html or robbins-bio
.html.

Avoid special characters such as ?,
%, #, /, :, ;, •, etc. Limit filenames
to letters, numbers, underscores,
hyphens, and periods.

Filenames may be case-sensitive,
depending on your server
configuration. Consistently using
all lowercase letters in filenames,
although not necessary, is one
way to make your filenames
easier to manage.

Keep filenames short. Short names
keep the character count and file
size of your HTML file in check.
If you really must give the file a
long, multiword name, you can
separate words with hyphens,
such as a-long-document-title.
html, to improve readability.

Self-imposed conventions. It is
helpful to develop a consistent
naming scheme for huge
sites. For instance, always
using lowercase with hyphens
between words. This takes
some of the guesswork out of
remembering what you named
a file when you go to link to it
later.

Figure 4-4. Saving index.html in a new folder called “bistro”.

Part II, HTML Markup for structure54

step 1: start with Content

Name the new folder bistro, and save the text file as index.html in it. Windows
users, you will also need to choose “All Files” after “Save as type” to prevent
Notepad from adding a “.txt” extension to your filename. The filename needs
to end in .html to be recognized by the browser as a web document. See the
sidebar “Naming Conventions” for more tips on naming files.

3. Just for kicks, let’s take a look at index.html in a browser. Launch your favorite
browser (I’m using Google Chrome) and choose “Open” or “Open File” from the File
menu. Navigate to index.html, and then select the document to open it in the
browser. You should see something like the page shown in Figure 4-5. We’ll talk

Figure 4-5. A first look at the content in a browser.

Learning from step 1
Our content isn’t looking so good (Figure 4-5). The text is all run together—
that’s not how it looked in the original document. There are a couple of
things to be learned here. The first thing that is apparent is that the browser
ignores line breaks in the source document. The sidebar “What Browsers
Ignore” lists other information in the source that is not displayed in the
browser window.

Second, we see that simply typing in some content and naming the docu-
ment .html is not enough. While the browser can display the text from the
file, we haven’t indicated the structure of the content. That’s where HTML
comes in. We’ll use markup to add structure: first to the HTML document
itself (coming up in Step 2), then to the page’s content (Step 3). Once the
browser knows the structure of the content, it can display the page in a more
meaningful way.

What Browsers
Ignore
Some information in the source
document will be ignored when it is
viewed in a browser, including:

Multiple (white) spaces. When a
browser encounters more than
one consecutive blank character
space, it displays a single space.
So if the document contains:

long, long ago

the browser displays:

long, long ago

Line breaks (carriage returns).
Browsers convert carriage returns
to white spaces, so following
the earlier “ignore multiple white
spaces rule,” line breaks have
no effect on formatting the
page. Text and elements wrap
continuously until a new block
element, such as a heading (h1)
or paragraph (p), or the line break
(br) element is encountered in
the flow of the document text.

Tabs. Tabs are also converted to
character spaces, so guess what?
Useless.

Unrecognized markup. Browsers
are instructed to ignore any tag
they don’t understand or that was
specified incorrectly. Depending
on the element and the browser,
this can have varied results. The
browser may display nothing at
all, or it may display the contents
of the tag as though it were
normal text.

Text in comments. Browsers
will not display text between
the special <!-- and --> tags
used to denote a comment. See
the Adding Hidden Comments
sidebar later in this chapter.

step 2: Give the Document structure

Chapter 4, Creating a simple Page 55

step 2: Give the Document structure
We have our content saved in an .html document—now we’re ready to start
marking it up.

Introducing…HTML elements
Back in Chapter 2, How the Web Works, you saw examples of HTML ele-
ments with an opening tag (<p> for a paragraph, for example) and closing
tag (</p>). Before we start adding tags to our document, let’s look at the
anatomy of an HTML element (its syntax) and firm up some important ter-
minology. A generic container element is labeled in Figure 4-6.

Opening tag

Element

<element name> Content here </element name>

Closing tag
(starts with a /)

Content
(may be text and/or other HTML elements)

<h1> Black Goose Bistro </h1>

Figure 4-6. The parts of an HTML container element.

Elements are identified by tags in the text source. A tag consists of the ele-
ment name (usually an abbreviation of a longer descriptive name) within
angle brackets (< >). The browser knows that any text within brackets is
hidden and not displayed in the browser window.

The element name appears in the opening tag (also called a start tag) and
again in the closing (or end) tag preceded by a slash (/). The closing tag
works something like an “off” switch for the element. Be careful not to use
the similar backslash character in end tags (see the tip Slash vs. Backslash).

The tags added around content are referred to as the markup. It is important
to note that an element consists of both the content and its markup (the start
and end tags). Not all elements have content, however. Some are empty by
definition, such as the img element used to add an image to the page. We’ll
talk about empty elements a little later in this chapter.

One last thing…capitalization. In HTML, the capitalization of element
names is not important. So , , and are all the same as far as
the browser is concerned. However, in XHTML (the stricter version of
HTML) all element names must be all lowercase in order to be valid. Many
web developers have come to like the orderliness of the stricter XHTML
markup rules and stick with all lowercase, as I will do in this book.

An element consists of
both the content and its
markup.

slash vs. Backslash
HTML tags and URLs use the slash
character (/). The slash character is
found under the question mark (?) on
the standard QWERTY keyboard.

It is easy to confuse the slash with
the backslash character (\), which is
found under the bar character (|). The
backslash key will not work in tags or
URLs, so be careful not to use it.

T i p

Part II, HTML Markup for structure56

step 2: Give the Document structure

Basic document structure
Figure 4-7 shows the recommended minimal skeleton of an HTML5 docu-
ment. I say “recommended” because the only element that is required in
HTML is the title. But I feel it is better, particularly for beginners, to
explicitly organize documents with the proper structural markup. And if
you are writing in the stricter XHTML, all of the following elements except
meta must be included in order to be valid. Let’s take a look at what’s going
on in Figure 4-7.

1 I don’t want to confuse things, but the first line in the example isn’t an
element at all; it is a document type declaration (also called DOCTYPE
declaration) that identifies this document as an HTML5 document. I
have a lot more to say about DOCTYPE declarations in Chapter 10,
What’s Up, HTML5?, but for this discussion, suffice it to say that includ-
ing it lets modern browsers know they should interpret the document as
written according to the HTML5 specification.

2 The entire document is contained within an html element. The html ele-
ment is called the root element because it contains all the elements in the
document, and it may not be contained within any other element. It is
used for both HTML and XHTML documents.

3 Within the html element, the document is divided into a head and a body.
The head element contains descriptive information about the document
itself, such as its title, the style sheet(s) it uses, scripts, and other types
of “meta” information.

4 The meta elements within the head element provide information about the
document itself. A meta element can be used to provide all sorts of infor-
mation, but in this case, it specifies the character encoding (the standard-
ized collection of letters, numbers, and symbols) used in the document.
I don’t want to go into too much detail on this right now, but know that
there are many good reasons for specifying the charset in every docu-
ment, so I have included it as part of the minimal document structure.

5 Also in the head is the mandatory title element.
According to the HTML specification, every document
must contain a descriptive title.

6 Finally, the body element contains everything that
we want to show up in the browser window.

Are you ready to add some structure to the Black
Goose Bistro home page? Open the index.html docu-
ment and move on to Exercise 4-2.

n oT e

Prior to HTML5, the syntax for specify-
ing the character set with the meta ele-
ment was a bit more elaborate. If you
are writing your documents in HTML
4.01 or XHTML 1.0, your meta element
should look like this:

<meta http-equiv="content-
type" content="text/html;
charset=UTF-8">

<!DOCTYPE html>

<html>

<head>
<meta charset="utf-8">
<title>Title here</title>
</head>

<body>
Page content goes here.
</body>

</html>

1

2

3
4

5

6

Figure 4-7. The minimal structure of an
HTML document.

step 2: Give the Document structure

Chapter 4, Creating a simple Page 57

exercise 4-2 | Adding basic structure
1. Open the newly created document, index.html, if it isn't open already.

2. Start by adding the HTML5 DOCTYPE declaration:

<!DOCTYPE html>

3. Put the entire document in an HTML root element by adding an <html> start tag
at the very beginning and an end <html> tag at the end of the text.

4. Next, created the document head that contains the title for the page. Insert
<head> and </head> tags before the content. Within the head element, add
informatino about the character encoding <meta charset="utf-8">, and the title,
"Black Goose Bistro", surrounded by opening and closing <title> tags.

The correct terminology is to say that the title element is nested within the
head element. We’ll talk about nesting more in later chapters.

5. Finally, define the body of the document by wrapping the content in <body> and
</body> tags. When you are done, the source document should look like this (the
markup is shown in color to make it stand out):

<!DOCTYPE html>
<html>

<head>
<meta charset ="utf-8">
<title>Black Goose Bistro</title>
</head>

<body>
Black Goose Bistro

The Restaurant
The Black Goose Bistro offers casual lunch and dinner fare in
a hip atmosphere. The menu changes regularly to highlight the
freshest ingredients.

Catering Services
You have fun... we'll do the cooking. Black Goose catering can
handle events from snacks for bridge club to elegant corporate
fundraisers.
Location and Hours
Seekonk, Massachusetts;
Monday through Thursday 11am to 9pm, Friday and Saturday, 11am to
midnight
</body>

</html>

6. Save the document in the bistro
directory, so that it overwrites the
old version. Open the file in the
browser or hit "refresh" or "reload"
if it is open already. Figure 4-8
shows how it should look now.

.

Figure 4-8. The page in a browser after
the document structure elements have
been defined.

Part II, HTML Markup for structure58

step 3: Identify Text Elements

Not much has changed after structuring the document, except that the
browser now displays the title of the document in the top bar or tab. If some-
one were to bookmark this page, that title would be added to his Bookmarks
or Favorites list as well (see the sidebar Don’t Forget a Good Title). But the
content still runs together because we haven’t given the browser any indica-
tion of how it should be structured. We’ll take care of that next.

step 3: Identify Text Elements
With a little markup experience under your belt, it should be a no-brainer
to add the markup that identifies headings and subheads (h1 and h2), para-
graphs (p), and emphasized text (em) to our content, as we’ll do in Exercise
4-3. However, before we begin, I want to take a moment to talk about what
we’re doing and not doing when marking up content with HTML.

Introducing…semantic markup
The purpose of HTML is to add meaning and structure to the content. It
is not intended to provide instructions for how the content should look (its
presentation).

Your job when marking up content is to choose the HTML element that
provides the most meaningful description of the content at hand. In the biz,
we call this semantic markup. For example, the most important heading
at the beginning of the document should be marked up as an h1 because it
is the most important heading on the page. Don’t worry about what that
looks like in the browser…you can easily change that with a style sheet. The
important thing is that you choose elements based on what makes the most
sense for the content.

In addition to adding meaning to content, the markup gives the document
structure. The way elements follow each other or nest within one another
creates relationships between the elements. You can think of it as an outline
(its technical name is the DOM, for Document Object Model). The underly-
ing document hierarchy is important because it gives browsers cues on how
to handle the content. It is also the foundation upon which we add presenta-
tion instructions with style sheets and behaviors with JavaScript. We’ll talk
about document structure more in Part III, when we discuss Cascading Style
Sheets, and in Part IV in the JavaScript overview.

Although HTML was intended to be used strictly for meaning and structure
since its creation, that mission was somewhat thwarted in the early years of
the web. With no style sheet system in place, HTML was extended to give
authors ways to change the appearance of fonts, colors, and alignment using
markup alone. Those presentational extras are still out there, so you may run
across them if you view the source of older sites or a site made with old tools.

Don’t Forget a
Good Title
Not only is a title element required
for every document, it is quite useful
as well. The title is what is displayed
in a user’s Bookmarks or Favorites
list and on tabs in desktop browsers.
Descriptive titles are also a key tool
for improving accessibility, as they are
the first thing a person hears when
using a screen reader. Search engines
rely heavily on document titles as
well. For these reasons, it’s important
to provide thoughtful and descriptive
titles for all your documents and
avoid vague titles, such as “Welcome”
or “My Page.” You may also want
to keep the length of your titles in
check so they are able to display in
the browser’s title area. Another best
practice is to put the part of the title
with more specific information first
(for example, the page description
ahead of the company name) so that
the page title is visible when multiple
tabs are lined up in the browser
window.

step 3: Identify Text Elements

Chapter 4, Creating a simple Page 59

In this book, however, we’ll focus on using HTML the right way, in keeping
with the contemporary standards-based, semantic approach to web design.

OK, enough lecturing. It’s time to get to work on that content in Exercise 4-3.

exercise 4-3 | Defining text elements
1. Open the document index.html in your text editor, if it isn’t

open already.

2. The first line of text, “Black Goose Bistro,” is the main heading
for the page, so we’ll mark it up as a Heading Level 1 (h1)
element. Put the opening tag, <h1>, at the beginning of the
line and the closing tag, </h1>, after it, like this:

<h1>Black Goose Bistro</h1>

3. Our page also has three subheads. Mark them up as Heading
Level 2 (h2) elements in a similar manner. I’ll do the first one
here; you do the same for “Catering” and “Location and Hours”.

<h2>The Restaurant</h2>

4. Each h2 element is followed by a brief paragraph of text, so
let’s mark those up as paragraph (p) elements in a similar
manner. Here’s the first one; you do the rest.

<p>The Black Goose Bistro offers casual lunch and
dinner fare in a hip atmosphere. The menu changes
regularly to highlight the freshest ingredients.
</p>

5. Finally, in the Catering section, I want to emphasize that
visitors should just leave the cooking to us. To make text
emphasized, mark it up in an emphasis element (em) element,
as shown here.

<p>You have fun... we'll handle the cooking

. Black Goose Catering can handle events
from snacks for bridge club to elegant corporate
fundraisers.</p>

6. Now that we’ve marked up the document, let’s save it as we
did before, and open (or refresh) the page in the browser.
You should see a page that looks much like the one in Figure
4-9. If it doesn’t, check your markup to be sure that you aren’t
missing any angle brackets or a slash in a closing tag.

Figure 4-9. The home page after the content has been marked
up with HTML elements.

Now we’re getting somewhere. With the elements properly identified, the
browser can now display the text in a more meaningful manner. There are a
few significant things to note about what’s happening in Figure 4-9.

Block and inline elements
Although it may seem like stating the obvious, it is worth pointing out
that the heading and paragraph elements start on new lines and do not run
together as they did before. That is because by default, headings and para-
graphs display as block elements. Browsers treat block elements as though
they are in little rectangular boxes, stacked up in the page. Each block ele-
ment begins on a new line, and some space is also usually added above and
below the entire element by default. In Figure 4-10, the edges of the block
elements are outlined in red.

Part II, HTML Markup for structure60

step 3: Identify Text Elements

Figure 4-10. The outlines show the structure of the elements in the home page.

By contrast, look at the text we marked up as emphasized (em). It does not
start a new line, but rather stays in the flow of the paragraph. That is because
the em element is an inline element. Inline elements do not start new lines;
they just go with the flow. In Figure 4-10, the inline em element is outlined
in light blue.

Default styles
The other thing that you will notice about the marked-up page in Figures 4-9
and 4-10 is that the browser makes an attempt to give the page some visual
hierarchy by making the first-level heading the biggest and boldest thing on
the page, with the second-level headings slightly smaller, and so on.

How does the browser determine what an h1 should look like? It uses a style
sheet! All browsers have their own built-in style sheets (called user agent
style sheets in the spec) that describe the default rendering of elements. The
default rendering is similar from browser to browser (for example, h1s are
always big and bold), but there are some variations (long quotes may or may
not be indented).

If you think the h1 is too big and clunky as the browser renders it, just
change it with a style sheet rule. Resist the urge to mark up the heading with
another element just to get it to look better, for example, using an h3 instead
of an h1 so it isn’t as large. In the days before ubiquitous style sheet support,
elements were abused in just that way. Now that there are style sheets for
controlling the design, you should always choose elements based on how

Adding Hidden
Comments
You can leave notes in the source
document for yourself and others
by marking them up as comments.
Anything you put between comment
tags (<!-- -->) will not display in the
browser and will not have any effect
on the rest of the source.

<!-- This is a comment -->
<!-- This is a
 multiple-line comment
 that ends here. -->

Comments are useful for labeling
and organizing long documents,
particularly when they are shared by
a team of developers. In this example,
comments are used to point out the
section of the source that contains
the navigation.

<!-- start global nav -->

 ...

<!-- end global nav -->

Bear in mind that although the
browser will not display comments
in the web page, readers can see
them if they “view source,” so be
sure that the comments you leave
are appropriate for everyone. It’s
probably a good idea just to strip
out notes to your fellow developers
before the site is published. It cuts
some bytes off the file size as well.

step 4: Add an Image

Chapter 4, Creating a simple Page 61

accurately they describe the content, and don’t worry about the browser’s
default rendering.

We’ll fix the presentation of the page with style sheets in a moment, but first,
let’s add an image to the page.

step 4: Add an Image
What fun is a web page with no image? In Exercise 4-4, we’ll add an image
to the page using the img element. Images will be discussed in more detail
in Chapter 7, Adding Images, but for now, it gives us an opportunity to
introduce two more basic markup concepts: empty elements and attributes.

Empty elements
So far, nearly all of the elements we’ve used in the Black Goose Bistro home
page have followed the syntax shown in Figure 4-1: a bit of text content sur-
rounded by start and end tags.

A handful of elements, however, do not have text content because they are
used to provide a simple directive. These elements are said to be empty. The
image element (img) is an example of such an element; it tells the browser
to get an image file from the server and insert it at that spot in the flow of
the text. Other empty elements include the line break (br), thematic breaks
(hr),� and elements that provide information about a document but don’t
affect its displayed content, such as the meta element that we used earlier.

Figure 4-11 shows the very simple syntax of an empty element (compare to
Figure 4-4). If you are writing an XHTML document, the syntax is slightly
different (see the sidebar Empty Elements in XHTML).

<p>1005 Gravenstein Highway North
Sebastopol, CA 95472</p>

Example: The br element inserts a line break.

<element-name>

Figure 4-11. Empty element structure.

Attributes
Let’s get back to adding an image with the empty img element. Obviously, an
 tag is not very useful by itself—there’s no way to know which image to
use. That’s where attributes come in. Attributes are instructions that clarify
or modify an element. For the img element, the src (short for “source”) attri-
bute is required, and specifies the location (URL) of the image file.

Empty Elements in
XHTML
In XHTML, all elements, including
empty elements, must be closed (or
terminated, to use the proper term).
Empty elements are terminated by
adding a trailing slash preceded by
a space before the closing bracket,
like so: ,
, <meta />,
and <hr />. Here is the line break
example using XHTML syntax.

<p>1005 Gravenstein Highway
North
Sebastopol, CA
95472</p>

Part II, HTML Markup for structure62

step 4: Add an Image

Attribute Attribute

Attribute name ValueValue Attribute name

Attribute names and values are separated by an equals sign (=)

Multiple attributes are separated by a space

Figure 4-12. An img element with attributes.

The syntax for an attribute is as follows:

attributename="value"

Attributes go after the element name, separated by a space. In non-empty
elements, attributes go in the opening tag only:

<element attributename="value">

<element attributename="value">Content</element>

You can also put more than one attribute in an element in any order. Just
keep them separated with spaces.

<element attribute1="value" attribute2="value">

For another way to look at it, Figure 4-12 shows an img element with its
required attributes labeled.

Here’s what you need to know about attributes:

•	 Attributes go after the element name in the opening tag only, never in
the end tag.

•	 There may be several attributes applied to an element, separated by
spaces in the opening tag. Their order is not important.

•	 Most attributes take values, which follow an equals sign (=). In HTML,
some attribute values can be reduced to single descriptive words, for
example, the checked attribute, which makes a checkbox checked when a
form loads. In XHTML, however, all attributes must have explicit values
(checked="checked"). You may hear this type of attribute called a Boolean
attribute because it describes a feature that is either on or off.

•	 A value might be a number, a word, a string of text, a URL, or a measure-
ment, depending on the purpose of the attribute. You’ll see examples of
all of these throughout this book.

•	 Some values don’t have to be in quotation marks in HTML, but XHTML
requires them. Many developers like the consistency and tidiness of quo-
tation marks even when authoring HTML. Either single or double quota-
tion marks are acceptable as long as they are used consistently; however,

step 4: Add an Image

Chapter 4, Creating a simple Page 63

double quotation marks are the convention. Note that quotation marks
in HTML files need to be straight (") not curly (”).

•	 Some attributes are required, such as the src and alt attributes in the
img element.

•	 The attribute names available for each element are defined in the HTML
specifications; in other words, you can’t make up an attribute for an ele-
ment.

Now you should be more than ready to try your hand at adding the img ele-
ment with its attributes to the Black Goose Bistro page in the next exercise.
We’ll throw a few line breaks in there as well.

exercise 4-4 | Adding an image
1. If you’re working along, the first thing you’ll need to do is get a copy of the

image file on your hard drive so you can see it in place when you open the file
locally. The image file is provided in the materials for this chapter. You can also
get the image file by saving it right from the sample web page online at www.
learningwebdesign.com/4e/chapter04/bistro. Right-click (or Ctrl-click on a Mac)
on the goose image and select “Save to disk” (or similar) from the pop-up menu as
shown in Figure 4-13. Name the file blackgoose.png. Be sure to save it in the bistro
folder with index.html.

2. Once you have the image, insert it at the beginning of the first-level heading by
typing in the img element and its attributes as shown here:

<h1>Black Goose
Bistro</h1>

The src attribute provides the name of the image file that should be inserted,
and the alt attribute provides text that should be displayed if the image is not
available. Both of these attributes are required in every img element.

Windows:
Right-click on the image to
access the pop-up menu

Mac:
Control-click on the image to
access the popup menu. The
options my vary by browser.

Figure 4-13. Saving an image file from a page on the Web.

Part II, HTML Markup for structure64

step 5: Change the Look with a style sheet

3. I’d like the image to appear above the title, so lets add a line break (br) after the
img element to start the headline text on a new line.

<h1>
Black
Goose Bistro</h1>

4. Let’s break up the last paragraph into three lines for better clarity. Drop a

tag at the spots you’d like the line breaks to occur. Try to match the screenshot in
Figure 4-14.

5. Now save index.html and open or refresh it in the browser window. The page
should look like the one shown in Figure 4-14. If it doesn’t, check to make sure that
the image file, blackgoose.png, is in the same directory as index.html. If it is, then
check to make sure that you aren’t missing any characters, such as a closing quote
or bracket, in the img element markup.

Figure 4-14. The Black Goose Bistro page with the logo image.

step 5: Change the Look
with a style sheet
Depending on the content and purpose of your website, you may decide
that the browser’s default rendering of your document is perfectly adequate.
However, I think I’d like to pretty up the Black Goose Bistro home page a bit
to make a good first impression on potential patrons. “Prettying up” is just
my way of saying that I’d like to change its presentation, which is the job of
Cascading Style Sheets (CSS).

In Exercise 4-5, we’ll change the appearance of the text elements and the
page background using some simple style sheet rules. Don’t worry about
understanding them all right now; we’ll get into CSS in more detail in Part
III. But I want to at least give you a taste of what it means to add a “layer” of
presentation onto the structure we’ve created with our markup.

When Good Pages Go Bad

Chapter 4, Creating a simple Page 65

exercise 4-5 | Adding a style sheet
1. Open index.html if it isn’t open already.

2. We’re going to use the style element to apply a very simple
embedded style sheet to the page. (This is just one of the
ways to add a style sheet; the others are covered in Chapter
11, Style Sheet Orientation.)

The style element is placed inside the head of the
document. Start by adding the style element to the
document as shown here:

<head>
 <meta charset="utf-8">
 <title>Black Goose Bistro</title>
 <style>

 </style>
</head>

3. Now, type the following style rules within the style element
just as you see them here. Don’t worry if you don’t know
exactly what is going on (although it is fairly intuitive). You’ll
learn all about style rules in Part III.

<style>

body {
 background-color: #faf2e4;
 margin: 0 15%;
 font-family: sans-serif;
 }

h1 {
 text-align: center;
 font-family: serif;
 font-weight: normal;
 text-transform: uppercase;

 border-bottom: 1px solid #57b1dc;
 margin-top: 30px;
}

h2 {
 color: #d1633c;
 font-size: 1em;
}

</style>

4. Now it’s time to save the file and take a look at it in the
browser. It should look like the page in Figure 4-15. If it
doesn’t, go over the style sheet code to make sure you didn’t
miss a semicolon or a curly bracket.

Figure 4-15. The Black Goose Bistro page after CSS style rules
have been applied.

We’re finished with the Black Goose Bistro page. Not only have you written
your first web page, complete with a style sheet, but you’ve learned about
elements, attributes, empty elements, block and inline elements, the basic
structure of an HTML document, and the correct use of markup along the
way. Not bad for one chapter!

When Good Pages Go Bad
The previous demonstration went smoothly, but it’s easy for small things
to go wrong when typing out HTML markup by hand. Unfortunately, one
missed character can break a whole page. I’m going to break my page on
purpose so we can see what happens.

n oT e

Omitting the slash in the closing tag
(or even omitting the closing tag itself)
for block elements, such as headings or
paragraphs, may not be so dramatic.
Browsers interpret the start of a new
block element to mean that the previous
block element is finished.

Part II, HTML Markup for structure66

Validating Your Documents

What if I had forgotten to type the slash (/) in the closing emphasis tag
()? With just one character out of place (Figure 4-16), the remainder
of the document displays in emphasized (italic) text. That’s because without
that slash, there’s nothing telling the browser to turn “off” the emphasized
formatting, so it just keeps going.

I’ve fixed the slash, but this time, let’s see what would have happened
if I had accidentally omitted a bracket from the end of the first <h2> tag
(Figure 4-17).

See how the headline is missing? That’s because without the closing tag
bracket, the browser assumes that all the following text—all the way up
to the next closing bracket (>) it finds—is part of the <h2> opening tag.

Browsers don’t display any text within a tag,
so my heading disappeared. The browser just
ignored the foreign-looking element name
and moved on to the next element.

Making mistakes in your first HTML docu-
ments and fixing them is a great way to learn.
If you write your first pages perfectly, I’d
recommend fiddling with the code as I have
here to see how the browser reacts to vari-
ous changes. This can be extremely useful in
troubleshooting pages later. I’ve listed some
common problems in the sidebar Having
Problems? Note that these problems are not
specific to beginners. Little stuff like this goes
wrong all the time, even for the pros.

Validating Your
Documents
One way that professional web developers
catch errors in their markup is to validate
their documents. What does that mean? To
validate a document is to check your markup
to make sure that you have abided by all the
rules of whatever version of HTML you are
using (there are more than one, as we’ll dis-
cuss in Chapter 10, What’s Up, HTML5?).
Documents that are error-free are said to be
valid. It is strongly recommended that you
validate your documents, especially for pro-
fessional sites. Valid documents are more con-
sistent on a variety of browsers, they display
more quickly, and they are more accessible.

<h2>Catering</h2>
<p>You have fun... we'll handle the cooking. Black Goose
Catering can handle events from snacks for bridge club to elegant
corporate fundraisers.</p>

g.

Without the bracket, all the
following characters are
interpreted as part of a long,
unrecognizable element name,
and “The Restaurant” disappears
from the page.

<h2The Restaurant</h2>
<p>The Black Goose Bistro offers casual lunch and dinner fare
in a hip atmosphere. The menu changes regularly to highlight
the freshest ingredients.</p>

<h2The

Missing headline

Figure 4-16. When a slash is omitted, the
browser doesn’t know when the element
ends, as is the case in this example.

Figure 4-17. A missing end bracket makes
all the following content part of the tag,
and therefore it doesn’t display.

Test Yourself

Chapter 4, Creating a simple Page 67

Right now, browsers don’t require documents to be valid (in other words,
they’ll do their best to display them, errors and all), but any time you stray
from the standard you introduce unpredictability in the way the page is dis-
played or handled by alternative devices.

So how do you make sure your document is valid? You could check it
yourself or ask a friend, but humans make mistakes, and you aren’t really
expected to memorize every minute rule in the specifications. Instead, you
use a validator, software that checks your source against the HTML version
you specify. These are some of the things validators check for:

•	 The inclusion of a DOCTYPE declaration. Without it the validator
doesn’t know which version of HTML or XHTML to validate against.

•	 An indication of the character encoding for the document.

•	 The inclusion of required rules and attributes.

•	 Non-standard elements.

•	 Mismatched tags.

•	 Nesting errors.

•	 Typos and other minor errors.

Developers use a number of helpful tools for checking and correcting errors
in HTML documents. The W3C offers a free online validator at validator.
w3.org. For HTML5 documents, use the online validator located at html5.
validator.nu. Browser developer tools like the Firebug plug-in for Firefox or
the built-in developer tools in Safari and Chrome also have validators so you
can check your work on the fly. If you use Dreamweaver to create your sites,
there is a validator built into that as well.

Test Yourself
Now is a good time to make sure you understand the basics of markup.
Use what you’ve learned in this chapter to answer the following questions.
Answers are in Appendix A.

1. What is the difference between a tag and an element?

2. Write out the recommended minimal structure of an HTML5 document.

Having Problems?
The following are some typical
problems that crop up when creating
web pages and viewing them in a
browser:

I’ve changed my document, but when
I reload the page in my browser, it
looks exactly the same.

It could be you didn’t save your
document before reloading,
or you may have saved it in a
different directory.

Half my page disappeared.
This could happen if you are
missing a closing bracket (>) or a
quotation mark within a tag. This
is a common error when writing
HTML by hand.

I put in a graphic using the img
element, but all that shows up is a
broken image icon.

The broken graphic could mean
a couple of things. First, it might
mean that the browser is not
finding the graphic. Make sure
that the URL to the image file is
correct. (We’ll discuss URLs further
in Chapter 6, Adding Links.) Make
sure that the image file is actually
in the directory you’ve specified.
If the file is there, make sure it is
in one of the formats that web
browsers can display (GIF, JPEG,
or PNG) and that it is named with
the proper suffix (.gif, .jpeg or .jpg,
or .png, respectively).

Part II, HTML Markup for structure68

Element Review: Document structure

3. Indicate whether each of these filenames is an acceptable name for a web
document by circling “Yes” or “No.” If it is not acceptable, provide the
reason why.

 a. Sunflower.html Yes No

 b. index.doc Yes No

 c. cooking home page.html Yes No

 d. Song_Lyrics.html Yes No

 e. games/rubix.html Yes No

 f. %whatever.html Yes No

4. All of the following markup examples are incorrect. Describe what is
wrong with each one, and then write it correctly.

a.

b. <i>Congratulations!<i>

c. linked text</a href="file.html">

d. <p>This is a new paragraph<\p>

5. How would you mark up this comment in an HTML document so that
it doesn’t display in the browser window?

 product list begins here

Element Review: Document structure
This chapter introduced the elements that establish the structure of the doc-
ument. The remaining elements introduced in the exercises will be treated in
more depth in the following chapters.

Element Description

body Identifies the body of the document that holds the content

head Identifies the head of the document that contains information
about the document

html The root element that contains all the other elements

meta Provides information about the document

title Gives the page a title

69

IN THIs CHAPTER

Choosing the best element
for your content

Paragraphs and headings

Three types of lists

Organizing content into
sections

Text-level (inline) elements

Generic elements,
div and span

Special characters

Once your content is ready to go (you proofread it, right?) and you’ve added
the markup to structure the document (html, head, title, and body), you are
ready to identify the elements in the content. This chapter introduces the ele-
ments you have to choose from for marking up text content. There probably
aren’t as many of them as you might think, and really just a handful that
you’ll use with regularity. That said, this chapter is a big one and covers a lot
of ground.

As we begin our tour of elements, I want to reiterate how important it is to
choose elements semantically, that is, in a way that most accurately describes
the content’s meaning. If you don’t like how it looks, change it with a style
sheet. A semantically marked up document ensures your content is available
and accessible in the widest range of browsing environments, from desktop
computers and mobile devices to assistive screen readers. It also allows non-
human readers, such as search engine indexing programs, to correctly parse
your content and make decisions about the relative importance of elements
on the page.

With these principles in mind, it is time to meet the HTML text elements,
starting with the most basic element of them all, the humble paragraph.

i m p o R Ta n T n oT e

I will be teaching markup according to the HTML5 standard maintained by the W3C
(www.w3.org/TR/html5/) as it appeared as of this writing in mid-2012. There is
another “living” (therefore unnumbered) version of HTML maintained by the
WHATWG (whatwg.org) that is nearly the same, but usually has some differences.
I will be sure to point out elements and attributes that belong to only one spec. Both
specs are changing frequently, so I urge you to check online to see whether elements
have been added or dropped.

You may have heard that not all browsers support HTML5. That is true. But the vast
majority of the elements in HTML5 have been around for decades in earlier HTML
versions, so they are supported universally. Elements that are new in HTML5 and
may not be well supported will be indicated with this marker: . So, unless
I explicitly point out a support issue, you can assume that the markup descriptions
and examples presented here will work in all browsers.

markIng uP text

CHAPTER 5

http://www.w3.org/TR/html5/

Part II, HTML Markup for structure70

Paragraphs

Paragraphs
Paragraphs are the most rudimentary elements of a text document. You
indicate a paragraph with the p element by inserting an opening <p> tag at
the beginning of the paragraph and a closing </p> tag after it, as shown in
this example.

<p>Serif typefaces have small slabs at the ends of letter strokes. In
general, serif fonts can make large amounts of text easier to read.</p>

<p>Sans-serif fonts do not have serif slabs; their strokes are square
on the end. Helvetica and Arial are examples of sans-serif fonts.
In general, sans-serif fonts appear sleeker and more modern.</p>

Visual browsers nearly always display paragraphs on new lines with a bit of
space between them by default (to use a term from CSS, they are displayed
as a block). Paragraphs may contain text, images, and other inline elements
(called phrasing content in the spec), but they may not contain headings,
lists, sectioning elements, or any element that typically displays as a block
by default.

In HTML, it is OK to omit the closing </p> tag. A browser just assumes it is
closed when it encounters the next block element. However, in the stricter
XHTML syntax, the closing tag is required (no surprise there). Many web
developers, including myself, prefer to close paragraphs and all elements,
even in HTML, for the sake of consistency and clarity. I recommend folks
who are just learning markup, like yourself, do the same.

Headings
In the last chapter, we used the h1 and h2 elements to indicate headings for
the Black Goose Bistro page. There are actually six levels of headings, from
h1 to h6. When you add headings to content, the browser uses them to cre-
ate a document outline for the page. Assistive reading devices such as screen
readers use the document outline to help users quickly scan and navigate
through a page. In addition, search engines look at heading levels as part of
their algorithms (information in higher heading levels may be given more
weight). For these reasons, it is a best practice to start with the Level 1
heading (h1) and work down in numerical order (see note), creating a logical
document structure and outline.

This example shows the markup for four heading levels. Additional heading
levels would be marked up in a similar manner.

<h1>Type Design</h1>

<h2>Serif Typefaces</h2>
<p>Serif typefaces have small slabs at the ends of letter strokes.
In general, serif fonts can make large amounts of text easier to
read.</p>

<p>...</p>
A paragraph element

n oT e

You must assign an element to all the
text in a document. In other words,
all text must be enclosed in some sort
of element. Text that is not contained
within tags is called “naked” or “anony-
mous” text, and it will cause a document
to be invalid. For more information
about checking documents for validity,
see Chapter 4, Creating a Simple Page
(HTML Overview).

<h1>...</h1>
<h2>...</h2>
<h3>...</h3>
<h4>...</h4>
<h5>...</h5>
<h6>...</h6>

Heading elements

n oT e

HTML5 has a new outlining system
that looks beyond headings to generate
the outline. See the sidebar Sectioning
Content later in this chapter for details.

Headings

Chapter 5, Marking Up Text 71

<h3>Baskerville</h3>

<h4>Description</h4>
<p>Description of the Baskerville typeface.</p>

<h4>History</h4>
<p>The history of the Baskerville typeface.</p>

<h3>Georgia</h3>
<p>Description and history of the Georgia typeface.</p>

<h2>Sans-serif Typefaces</h2>
<p>Sans-serif typefaces do not have slabs at the ends of strokes.</p>

The markup in this example would create the following document outline:

1. Type Design

 1. Serif Typefaces
 + text paragraph

 1. Baskerville

 1. Description
 + text paragraph

 2. History
 + text paragraph

 2. Georgia
 + text paragraph

 2. Sans-Serif Typefaces
 + text paragraph

By default, the headings in our example will be displayed
in bold text, starting in very large type for h1s, with each
consecutive level in smaller text, as shown in Figure 5-1. You
can use a style sheet to change their appearance.

n oT e

All screenshots in this book were taken
using the Chrome browser on a Mac
unless otherwise noted.

Figure 5-1. The default rendering of four
heading levels.

h1

h2

h3

h4

h4

h3

h2

Part II, HTML Markup for structure72

Headings

Indicating a shift in Themes
<hr>

A horizontal rule

If you want to indicate that one topic or thought has completed and another one
is beginning, you can insert what is called in HTML5 a “paragraph-level thematic
break” using the hr element. It is used as a logical divider between sections of a page
or paragraphs of text. The hr element adds a logical divider between sections or
paragraphs of text without introducing a new heading level.

In HTML versions prior to HTML5, hr was defined as a “horizontal rule” because it
inserted a horizontal line on the page. Browsers still render hr as a 3D shaded rule
and put it on a line by itself with some space above and below by default, but it now
has a new semantic purpose. If a decorative line is all you’re after, it is better to create
a rule by specifying a colored border before or after an element with CSS.

hr is an empty element—you just drop it into place where you want the thematic
break to occur, as shown in this example and Figure 5-2. Note that in XHTML, the hr
element must be closed with a slash: <hr />.

<h3>Times</h3>
<p>Description and history of the Times typeface.</p>
<hr>
<h3>Georgia</h3>
<p>Description and history of the Georgia typeface.</p>

Heading groups
It is common for headlines to have clarifying subheads or taglines. Take, for
example, the title of Chapter 4 in this book:

creating a Simple page
(HTML Overview)

In the past, marking stacks of headings and subheadings was somewhat
problematic. The first line, “Creating a Simple Page,” is clearly an h1, but if
you make the second line an h2, you may introduce an unintended new level
to the document outline. The best you could do was mark it as a paragraph,
but that didn’t exactly make semantic sense.

<hgroup>...</hgroup>
A group of stacked headings

Figure 5-2. The default rendering of a horizontal rule.

Lists

Chapter 5, Marking Up Text 73

For this reason, HTML5 includes the hgroup element for identifying a stack
of headings as a group.* Browsers that support hgroup know to count only
the highest-ranked heading in the outline and ignore the rest. Here is how
the hgroup element could be used to mark up the title of Chapter 4. With
this markup, only the h1, “Creating a Simple Page,” would be represented in
the document outline.

<hgroup>
 <h1>Creating a Simple Page</h1>
 <h2>(HTML Overview)</h2>
</hgroup>

Lists
Humans are natural list makers, and HTML provides elements for marking
up three types of lists:

•	 Unordered lists. Collections of items that appear in no particular order.

•	 Ordered lists. Lists in which the sequence of the items is important.

•	 Description lists. Lists that consist of name and value pairs, including
but not limited to terms and definitions.

All list elements—the lists themselves and the items that go in them—are
displayed as block elements by default, which means that they start on a
new line and have some space above and below, but that may be altered with
CSS. In this section, we’ll look at each list type in detail.

Unordered lists
Just about any list of examples, names, components, thoughts, or options
qualify as unordered lists. In fact, most lists fall into this category. By default,
unordered lists display with a bullet before each list item, but you can
change that with a style sheet, as you’ll see in a moment.

To identify an unordered list, mark it up as a ul element. The opening
tag goes before the first list item, and the closing tag goes after the last
item. Then, each item in the list gets marked up as a list item (li) by enclos-
ing it in opening and closing li tags, as shown in this example. Notice that
there are no bullets in the source document. They are added automatically
by the browser (Figure 5-3).

 Serif
 Sans-serif
 Script
 Display
 Dingbats

* Although potentially useful, the future of the hgroup element is uncertain. If you are interested
in using it for a published site, you should check the HTML5 specification first.

s U p p o R T a L e R T

The hgroup element is not supported in
Internet Explorer versions 8 and ear-
lier (see the sidebar HTML5 Support in
Internet Explorer later in this chapter
for a workaround). Older versions of
Firefox and Safari (prior to 3.6 and 4,
respectively) do not support it accord-
ing to the spec, but they don’t ignore it
completely, so you can apply styles to it.

...
Unordered list

...
List item within an unordered list

n oT e

The only thing that is permitted within
an unordered list (that is, between the
start and end ul tags) is one or more
list items. You can’t put other elements
in there, and there may not be any
untagged text. However, you can put
any type of flow element within a list
item (li).

Part II, HTML Markup for structure74

Lists

Figure 5-3. The default rendering of the sample unordered list. The bullets are added
automatically by the browser.

But here’s the cool part. We can take that same unordered list markup and
radically change its appearance by applying different style sheets, as shown
in Figure 5-4. In the figure, I’ve turned off the bullets, added bullets of my
own, made the items line up horizontally, even made them look like graphi-
cal buttons. The markup stays exactly the same.

Figure 5-4. With style sheets, you can give the same unordered list many different looks.

Ordered lists
Ordered lists are for items that occur in a particular order, such as step-by-
step instructions or driving directions. They work just like the unordered
lists described earlier, except they are defined with the ol element (for
ordered list, of course). Instead of bullets, the browser automatically inserts
numbers before ordered list items, so you don’t need to number them in the
source document. This makes it easy to rearrange list items without renum-
bering them.

Ordered list elements must contain one or more list item elements, as shown
in this example and in Figure 5-5:

...
Ordered list

...
 List item within an ordered list

Nesting Lists
Any list can be nested within another
list; it just has to be placed within
a list item. This example shows the
structure of an unordered list nested
in the second ordered list item.

When you nest an unordered list
within another unordered list, the
browser automatically changes the
bullet style for the second-level list.
Unfortunately, the numbering style
is not changed by default when you
nest ordered lists. You need to set the
numbering styles yourself using style
sheets.

Lists

Chapter 5, Marking Up Text 75

 Gutenburg develops moveable type (1450s)
 Linotype is introduced (1890s)
 Photocomposition catches on (1950s)
 Type goes digital (1980s)

Figure 5-5. The default rendering of an ordered list. The numbers are added
automatically by the browser.

If you want a numbered list to start at a number other than “1,” you can use
the start attribute in the ol element to specify another starting number, as
shown here:

<ol start="17">
 Highlight the text with the text tool.
 Select the Character tab.
 Choose a typeface from the pop-up menu.

The resulting list items would be numbered 17, 18, and 19, consecutively.

Description lists
Description lists are used for any type of name/value pairs, such as terms and
their definitions, questions and answers, or other types of terms and their
associated information. Their structure is a bit different from the other two
lists that we just discussed. The whole description list is marked up as a dl
element. The content of a dl is some number of dt elements indicating the
names and dd elements for their respective values. I find it helpful to think of
them as “terms” (to remember the “t” in dt) and “definitions” (for the “d” in
dd), even though that is only one use of description lists in HTML5.

Here is an example of a list that associates forms of typesetting with their
descriptions (Figure 5-6).

<dl>
 <dt>Linotype</dt>
 <dd>Line-casting allowed type to be selected, used, then recirculated
into the machine automatically. This advance increased the speed of
typesetting and printing dramatically.</dd>

 <dt>Photocomposition</dt>
 <dd>Typefaces are stored on film then projected onto photo-sensitive
paper. Lenses adjust the size of the type.</dd>

 <dt>Digital type</dt>
 <dd><p>Digital typefaces store the outline of the font shape in a
format such as Postscript. The outline may be scaled to any size for
output.</p>
 <p>Postscript emerged as a standard due to its support of

Changing Bullets
and Numbering
You can use the list-style-type
style sheet property to change the
bullets and numbers for lists. For
example, for unordered lists, you
can change the shape from the
default dot to a square or an open
circle, substitute your own image,
or remove the bullet altogether. For
ordered lists, you can change the
numbers to roman numerals (I., II.,
III. or i., ii., iii.), letters (A., B., C., or a.,
b., c.), and several other numbering
schemes. In fact, as long as the list
is marked up semantically, it doesn’t
need to display with bullets or
numbering at all. Changing the style
of lists with CSS is covered in Chapter
18, CSS Techniques.

<dl>...</dl>
A description list

<dt>...</dt>
A name, such as a term or label

<dd>...</dd>
A value, such as a description or definition

Part II, HTML Markup for structure76

More Content Elements

graphics and its early support on the Macintosh computer and Apple
laser printer.</p>
 </dd>
</dl>

Figure 5-6. The default rendering of a definition list. Definitions are set off from the terms
by an indent.

The dl element is only allowed to contain dt and dd elements. It is OK to
have multiple definitions with one term and vice versa. You cannot put
headings or content-grouping elements (like paragraphs) in names (dt), but
the value (dd) can contain any type of flow content.

More Content Elements
We’ve covered paragraphs, headings, and lists, but there are a few more
special text elements to add to your HTML toolbox that don’t fit into a neat
category: long quotations (blockquote), preformatted text (pre), and figures
(figure and figcaption). One thing these elements do have in common is
that they are considered “grouping content” in the HTML5 spec (along with
p, hr, the list elements, and the generic div, covered later in this chapter).
The other thing they share is that browsers typically display them as block
elements by default.

Long quotations
If you have a long quotation, a testimonial, or a section of copy from another
source, you should mark it up as a blockquote element. It is recommended
that content within blockquote elements be contained in other elements,
such as paragraphs, headings, or lists, as shown in this example (see the
sidebar Sectioning Roots).

sectioning Roots
The blockquote is in a category of
elements called sectioning roots.
Headings in a sectioning root
element will not be included in the
main document outline. That means
you can have a complex heading
hierarchy within a blockquote
without worrying how it will
affect the overall structure of the
document. Other sectioning root
elements include figure, details,
fieldset (for organizing form fields),
td (a table cell), and body (because
it has its own outline, which also
happens be the outline of the
document).

<blockquote>...</blockquote>
A lengthy, block-level quotation

More Content Elements

Chapter 5, Marking Up Text 77

<p>Renowned type designer, Matthew Carter, has this to say about his
profession:</p>

<blockquote>
 <p>Our alphabet hasn't changed in eons; there isn't much latitude in
what a designer can do with the individual letters.</p>

 <p>Much like a piece of classical music, the score is written
down – it's not something that is tampered with – and yet, each
conductor interprets that score differently. There is tension in
the interpretation.</p>
</blockquote>

Figure 5-7 shows the default rendering of the blockquote example. This can
be altered with CSS.

Figure 5-7. The default rendering of a blockquote element.

Preformatted text
In the previous chapter, you learned that browsers ignore whitespace such as
line returns and character spaces in the source document. But in some types
of information, such as code examples or poetry, the whitespace is impor-
tant for conveying meaning. For these purposes, there is the preformatted
text (pre) element. It is a unique element in that it is displayed exactly as it is
typed—including all the carriage returns and multiple character spaces. By
default, preformatted text is also displayed in a constant-width font (one in
which all the characters are the same width, also called monospace), such
as Courier.

The pre element in this example displays as shown in Figure 5-8. The second
part of the figure shows the same content marked up as a paragraph (p) ele-
ment for comparison.

<pre>
This is an example of
 text with a lot of
 curious
 whitespace.
</pre>

n oT e

There is also the inline element, q, for
short quotations in the flow of text.
We’ll talk about it later in this chapter.

<pre>...</pre>
Preformatted text

n oT e

The white-space:pre CSS property can
also be used to preserve spaces and
returns in the source. Unlike the pre
element, text formatted with the white-
space property is not displayed in a
constant-width font.

Part II, HTML Markup for structure78

More Content Elements

<p>
This is an example of
 text with a lot of
 curious
 whitespace.
</p>

Figure 5-8. Preformatted text is unique in that the browser displays the whitespace
exactly as it is typed into the source document. Compare it to the paragraph element, in
which line returns and character spaces are reduced to a single space.

Figures
The figure element is used for content that illustrates or supports some
point in the text. A figure may contain an image, a video, a code snippet,
text, or even a table—pretty much anything that can go in the flow of web
content—and should be treated and referenced as a self-contained unit. That
means if a figure is removed from its original placement in the main flow
(to a sidebar or appendix, for example), both the figure and the main flow
should continue to make sense.

Although it is possible to simply drop an image into text, wrapping it in fig-
ure tags makes its purpose explicitly clear. It also allows you to apply special
styles to figures but not to other images on the page.

<figure>

</figure>

A caption can be attached to the figure using the optional figcaption ele-
ment above or below the figure content.

<figure>
 <pre><code>
 body {
 background-color: #000;
 color: red;
 }
 </code></pre>
 <figcaption>
 Sample CSS rule.
 </figcaption>
</figure>

In Exercise 5-1, you’ll get a chance to mark up a document yourself and try
out the basic text elements we’ve covered so far.

<figure>...</figure>
Contact information

<figcaption>...</figcaption>
Contact information

s U p p o R T a L e R T

The figure and figcaption elements are
not supported in Internet Explorer ver-
sions 8 and earlier (see the sidebar
HTML5 Support in Internet Explorer
later in this chapter for a workaround).
Older versions of Firefox and Safari
(prior to 3.6 and 4, respectively) do not
support it according to the spec, but
allow you to apply styles.

Organizing Page Content

Chapter 5, Marking Up Text 79

exercise 5-1 | Marking up a recipe
The owners of the Black Goose Bistro have decided to start a
blog to share recipes and announcements. In the exercises in this
chapter, we’ll assist them with content markup.

Below you will find the raw text of a recipe. It’s up to you to
decide which element is the best semantic match for each chunk

of content. You’ll use paragraphs, headings, lists, and at least one
special content element.

You can write the tags right on this page. Or, if you want to
use a text editor and see the results in a browser, this text file is
available online at www.learningwebdesign.com/4e/materials.
The resulting code appears in Appendix A.

Tapenade (Olive Spread)

This is a really simple dish to prepare and it’s always a big hit at parties. My father recommends:

“Make this the night before so that the flavors have time to blend. Just bring it up to room temperature
before you serve it. In the winter, try serving it warm.”

Ingredients

1 8oz. jar sundried tomatoes
2 large garlic cloves
2/3 c. kalamata olives
1 t. capers

Instructions

Combine tomatoes and garlic in a food processor. Blend until as smooth as possible.

Add capers and olives. Pulse the motor a few times until they are incorporated, but still retain some
texture.

Serve on thin toast rounds with goat cheese and fresh basil garnish (optional).

Organizing Page Content
So far, the elements we’ve covered handle very specific tidbits of content:
a paragraph, a heading, a figure, and so on. Prior to HTML5, there was
no way to group these bits into larger parts other than wrapping them in a
generic division (div) element (I’ll cover div in more detail later). HTML5
introduced new elements that give semantic meaning to sections of a typi-
cal web page or application, including sections (section), articles (article),
navigation (nav), tangentially related content (aside), headers (header), and
footers (footer). The new element names are based on a Google study that
looked at the top 20 names given to generic division elements (code.google.
com/webstats/2005-12/classes.html). Curiously, the spec lists the old address
element as a section as well, so we’ll look at that one here too.

The elements discussed in this section are well supported by current desktop
and mobile browsers, but there is a snag with Internet Explorer versions 8
and earlier. See the sidebar HTML5 Support in Internet Explorer for details
on a workaround.

http://code.google.com/webstats/2005-12/classes.html
http://code.google.com/webstats/2005-12/classes.html

Part II, HTML Markup for structure80

Organizing Page Content

HTML5 support in Internet Explorer
Most browsers today support the new HTML5 semantic
elements, and for those that don’t, creating a style sheet rule
that tells browsers to format each one as a block-level element
is all that is needed to make them behave correctly.

section, article, nav, aside, header, footer,
hgroup { display: block; }

Unfortunately, that fix won’t work with Internet Explorer versions
8 and earlier (versions 9 and later are fine). Not only do early
IE browsers not recognize the elements, they also ignore any
styles applied to them. The solution is to use JavaScript to create
each element so IE knows it exists and will allow nesting and
styling. Here’s what a JavaScript command creating the section
element looks like:

document.createElement("section");

Fortunately, Remy Sharp created a script that creates all of the

HTML5 elements for IE in one fell swoop. It is called “HTML5
Shiv” (or Shim) and it lives on a Google-run server, so you can
just point to it in your documents. To make sure the new HTML5
elements work in IE8 and earlier, copy this code in the head of
your document and use a style sheet to style the new elements
as blocks:

<!--[if lt IE 9]>
<script src="http://html5shiv.googlecode.com/svn/
trunk/html5-els.js"></script>
<![endif]-->

Find out more about the HTML5 Shiv here: html5doctor.com/
how-to-get-html5-working-in-ie-and-firefox-2/.

The HTML5 Shiv is also part of the Modernizr polyfill script that
adds HTML5 and CSS3 functionality to older non-supporting
browsers. Read more about it online at modernizr.com. It is also
discussed in Chapter 20, Using JavaScript.

sections and articles
Long documents are easier to use when they are divided into smaller parts.
For example, books are divided into chapters, and newspapers have sections
for local news, sports, comics, and so on. To divide long web documents
into thematic sections, use the aptly named section element. Sections typi-
cally have a heading (inside the section element) and any other content that
has a meaningful reason to be grouped together.

The section element has a broad range of uses, from dividing a whole page
into major sections or identifying thematic sections within a single article.
In the following example, a document with information about typography
resources has been divided into two sections based on resource type.

<section>
 <h2>Typography Books</h2>

 …

</section>

<section>
 <h2>Online Tutorials</h2>
 <p>These are the best tutorials on the web.</p>

 …

</section>

<section>…</section>
Thematic group of content

<article>…</article>
Self-contained, reusable composition

n oT e

The HTML5 spec recommends that if
the purpose for grouping the elements is
simply to provide a hook for styling, use
the generic div element instead.

Organizing Page Content

Chapter 5, Marking Up Text 81

Use the article element for self-contained works that could stand alone or
be reused in a different context (such as syndication). It is useful for maga-
zine or newspaper articles, blog posts, comments, or other items that could
be extracted for external use. You can think of it as a specialized section
element that answers the question “Could this appear on another site and
make sense?” with “yes.”

To make things interesting, a long article could be broken into a number
of sections, as shown here:

<article>
 <h1>Get to Know Helvetica</h1>
 <section>
 <h2>History of Helvetica</h2>
 <p>…</p>
 </section>

 <section>
 <h2>Helvetica Today</h2>
 <p>…</p>
 </section>
</article>

Conversely, a section in a web document might be comprised of a number
of articles.

<section id="essays">
 <article>
 <h1>A Fresh Look at Futura</h1>
 <p>…</p>
 </article>

 <article>
 <h1>Getting Personal with Humanist</h1>
 <p>…</p>
 </article>
</section>

The section and article elements are easily confused, particularly because
it is possible to nest one in the other and vice versa. Keep in mind that if the
content is self-contained and could appear outside the current context, it is
best marked up as an article.

sectioning
Elements
Another thing that section and
article have in common “under the
hood” is that both are what HTML5
calls sectioning elements. When a
browser runs across a sectioning
element in the document, it creates a
new item in the document’s outline
automatically. In prior HTML versions,
only headings (h1, h2, etc.) triggered
new outline items. The new nav
(primary navigation) and aside (for
sidebar-like information) are also
sectioning elements.

In the new HTML5 outlining system, a
sectioning element may have its own
internal heading hierarchy, starting
with h1, regardless of its position in
the document that contains it. That
makes it possible to take an article
element with its internal outline,
place it in another document flow,
and know that it won’t break the
host document’s outline. The goal
of the new outlining algorithm is to
make the markup meet the needs
of content use and reuse on the
modern Web.

As of this writing, no browsers
support the HTML5 outlining
system, so to make your documents
accessible and logically structured for
all users, it is safest to use headings
in descending numerical order, even
within sectioning elements.

For more information, I recommend
the HTML5 Doctor article “Document
Outlines,” by Mike Robinson, that
tackles HTML5 outlines in more detail
than I am able to squeeze in here
(html5doctor.com/outlines/).

In addition, Roger Johansson’s
article “HTML5 Sectioning Elements,
Headings, and Document Outlines”
describes some potential gotchas
when working with sectioning
elements (www.456bereastreet.com/
archive/201103/html5_sectioning_
elements_headings_and_document_
outlines/).

http://html5doctor.com/outlines/

Part II, HTML Markup for structure82

Organizing Page Content

Aside (sidebars)
The aside element identifies content that is related but tangential to the
surrounding content. In print, its equivalent is a sidebar, but they couldn’t
call the element sidebar, because putting something on the “side” is a
presentational description, not semantic. Nonetheless, a sidebar is a good
mental model for using the aside element. aside can be used for pull quotes,
background information, lists of links, callouts, or anything else that might
be associated with (but not critical to) a document.

In this example, an aside element is used for a list of links related to the
main article.

<h1>Web Typography</h1>
<p>Back in 1997, there were competing font formats and tools for making
them…</p>
<p>We now have a number of methods for using beautiful fonts on web
pages…</p>
<aside>
 <h2>Web Font Resources</h2>

 Typekit
 Google Fonts

</aside>

The aside element has no default rendering, so you will need to make it a
block element and adjust its appearance and layout with style sheet rules.

Navigation
The new nav element gives developers a semantic way to identify navigation
for a site. Earlier in this chapter, we saw an unordered list that might be used
as the top-level navigation for a font catalog site. Wrapping that list in a nav
element makes its purpose explicitly clear.

<nav>

 Serif/li>
 Sans-serif
 Script
 Display
 Dingbats/li>

</nav>

Not all lists of links should be wrapped in nav tags, however. The spec makes
it clear that it should be used for links that provide primary navigation
around a site or a lengthy section or article.

The nav element may be especially helpful from an accessibility perspective.
Once screen readers and other devices become HTML5-compatible, users
can easily get to or skip navigation sections without a lot of hunting around.

<aside>…<aside>
Tangentially related material

<nav>…</nav>
Primary navigation links

Organizing Page Content

Chapter 5, Marking Up Text 83

Headers and footers
Because web authors have been labeling header and footer sections in their
documents for years, it was kind of a no-brainer that full-fledged header and
footer elements would come in handy. Let’s start with headers.

Headers
The header element is used for introductory material that typically appears
at the beginning of a web page or at the top of a section or article. There
is no specified list of what a header must or should contain; anything that
makes sense as the introduction to a page or section is acceptable. In the fol-
lowing example, the document header includes a logo image, the site title,
and navigation.

<header>

 <hgroup>
 <h1>Nuts about Web Fonts</h1>
 <h2>News from the Web Typography Front</h2>
 </hgroup>
 <nav>

 Home
 Blog
 Shop

 </nav>
</header>

… page content …

When used in an individual article, the header might include the article title,
author, and the publication date, as shown here:

<article>
 <header>
 <h1>More about WOFF</h1>
 <p>by Jennifer Robbins, <time datetime="11-11-2011"
 pubdate>November 11, 2011</time></p>
 </header>
 <p>...article content starts here…</p>
</article>

Footers
The footer element is used to indicate the type of information that typically
comes at the end of a page or an article, such as its author, copyright infor-
mation, related documents, or navigation. The footer element may apply
to the entire document, or it could be associated with a particular section
or article. If the footer is contained directly within the body element, either
before or after all the other body content, then it applies to the entire page or
application. If it is contained in a sectioning element (section, article, nav,
or aside), it is parsed as the footer for just that section. Note that although
it is called “footer,” there is no requirement that it come last in the docu-

<header>…</header>
Introductory material for page, section, or article

<footer>…</footer>
Footer for page, section, or article

wa R n i n G

Neither header nor footer elements are
permitted to contain nested header or
footer elements.

Part II, HTML Markup for structure84

The Inline Element Roundup

ment or sectioning element. It could also appear at or near the beginning if
it makes semantic sense.

In this simple example we see the typical information listed at the bottom of
an article or blog post marked up as a footer.

<article>
 <header>
 <h1>More about WOFF</h1>
 <p>by Jennifer Robbins, <time datetime="11-11-2011"
 pubdate>November 11, 2011</time></p>
 </header>
 <p>...article content starts here…</p>
 <footer>
 <p><small>Copyright ©2012 Jennifer Robbins.</small></p>
 <nav>

 Previous
 Next

 </nav>
 </footer>
</article>

Addresses
Last, and well, least, is the address element that is used to create an area
for contact information for the author or maintainer of the document. It is
generally placed at the end of the document or in a section or article within
a document. An address would be right at home in a footer element.

It is important to note that the address element should not be used for any
old address on a page, such as mailing addresses. It is intended specifically
for author contact information (although that could potentially be a mailing
address). Following is an example of its intended use. The “a href” parts are
the markup for links…we’ll get to those in Chapter 6, Adding Links.

<address>
Contributed by Jennifer Robbins,
O'Reilly Media
</address>

The Inline Element Roundup
Now that we’ve identified the larger chunks of content, we can provide
semantic meaning to phrases within the chunks using what HTML5 calls
text-level semantic elements. On the street, you are likely to hear them called
inline elements because they display in the flow of text by default and do
not cause any line breaks. That’s also how they were referred to in HTML
versions prior to HTML5.

n oT e

You can also add headers and footers
to sectioning root elements: body, block-
quote, details, figure, td, and fieldset.

<address>...</address>
Contact information

n oT e

You’ll get a chance to try out the section
elements in Exercise 5-3 at the end of
this chapter.

The Inline Element Roundup

Chapter 5, Marking Up Text 85

Text-level (inline) elements
Despite all the types of information you could add to a document, there are
only a couple dozen text-level semantic elements in HTML5. Table 5-1 lists
all of them.

Table 5-1. Text-level semantic elements

Element Description

a An anchor or hypertext link (see Chapter 6 for details)

abbr Abbreviation

b Added visual attention, such as keywords (bold)

bdi Indicates text that may have directional require-
ments

bdo Bidirectional override; explicitly indicates text direction (left to
right, ltr, or right to left, rtl)

br Line break

cite Citation; a reference to the title of a work, such as a book title

code Computer code sample

data Machine-readable equivalent dates, time, weights,
and other measurable values

del Deleted text; indicates an edit made to a document

dfn The defining instance or first occurrence of a term

em Emphasized text

i Alternative voice (italic)

ins Inserted text; indicates an insertion in a document

kbd Keyboard; text entered by a user (for technical documents)

mark Contextually relevant text

q Short, inline quotation

ruby, rt, rp Provides annotations or pronunciation guides
under East Asian typography and ideographs

s Incorrect text (strike-through)

samp Sample output from programs

small Small print, such as a copyright or legal notice (displayed in a
smaller type size)

span Generic phrase content

strong Content of strong importance

sub Subscript

sup Superscript

time Machine-readable time data

u Underlined

var A variable or program argument (for technical documents)

wbr Word break

The Inline Elements
Backstory
Many of the inline elements that
have been around since the dawn
of the Web were introduced to
change the visual formatting of text
selections due to the lack of a style
sheet system. If you wanted bolded
text, you marked it as b. Italics? Use
the i element. In fact, there was once
a font element used solely to change
the font, color, and size of text (the
horror!). Not surprisingly, HTML5
kicked the purely presentational font
element to the curb. However, many
of the old-school presentational
inline elements (for example, u for
underline and s for strike-through)
have been kept in HTML5 and given
new semantic definitions (b is now
for “keywords,” s for “inaccurate text”).

Some inline elements are purely
semantic (such as abbr or time) and
don’t have default renderings. For
these, you’ll need to use a CSS rules
if you want to change the way they
display.

In the element descriptions in
this section, I’ll provide both the
definition of the inline elements
and the expected browser default
rendering if there is one.

Part II, HTML Markup for structure86

The Inline Element Roundup

Obsolete HTML 4.01 Text Elements
HTML5 finally retired many elements that were marked as deprecated (phased out
and discouraged from use) in HTML 4.01. For the sake of thoroughness, I include
them here in case you run across them in legacy markup. But there’s no reason to use
them—most have analogous style sheet properties or are simply poorly supported.

Element Description

acronym Indicates an acronym (e.g., NASA); authors should use abbr instead

applet Inserts a Java applet

basefont Establishes default font settings for a document

big Makes text slightly larger than default text size

center Centers content horizontally

dir Directory list (replaced by unordered lists)

font Font face, color, and size

isindex Inserts a search box

menu Menu list (replaced by unordered lists; however, menu is now used to
provide contextual menu commands)

strike Strike-through text

tt Teletype; displays in constant-width font

Emphasized text
Use the em element to indicate which part of a sentence should be stressed or
emphasized. The placement of em elements affects how a sentence’s meaning
is interpreted. Consider the following sentences that are identical, except for
which words are stressed.

<p>Matt is very smart.</p>

<p>Matt is very smart.</p>

The first sentence indicates who is very smart. The second example is about
how smart he is.

Emphasized text (em) elements nearly always display in italics by default
(Figure 5-9), but of course you can make them display any way you like
with a style sheet. Screen readers may use a different tone of voice to convey
stressed content, which is why you should use an em element only when it
makes sense semantically, not just to achieve italic text.

Important text
The strong element indicates that a word or phrase as important. In the
following example, the strong element identifies the portion of instructions
that requires extra attention.

...
Stressed emphasis

...
Strong importance

The Inline Element Roundup

Chapter 5, Marking Up Text 87

<p>When checking out of the hotel, drop the keys in the red box
by the front desk.</p>

Visual browsers typically display strong text elements in bold text by
default. Screen readers may use a distinct tone of voice for important con-
tent, so mark text as strong only when it makes sense semantically, not just
to make text bold.

The following is a brief example of our em and strong text examples.
Figure 5-9 should hold no surprises.

Figure 5-9. The default rendering of emphasized and strong text.

The previously presentational elements that are sticking
around in HTML5 with fancy new semantic definitions
As long as we’re talking about bold and italic text, let’s see what the old b
and i elements are up to now. The elements b, i, u, s, and small were intro-
duced in the old days of the Web as a way to provide typesetting instruc-
tions (bold, italic, underline, strikethrough, and smaller text, respectively).
Despite their original presentational purposes, these elements have been
included in HTML5 and given updated, semantic definitions based on pat-
terns of how they’ve been used. Browsers still render them by default as
you’d expect (Figure 5-10). However, if a type style change is all you’re after,
using a style sheet rule is the appropriate solution. Save these for when they
are semantically appropriate.

Let’s look at these elements and their correct usage, as well as the style sheet
alternatives.

b

HTML 4.01 definition: Bold

HTML5 definition: Keywords, product names, and other phrases that need
to stand out from the surrounding text without conveying added importance
or emphasis.

CSS alternative: For bold text, use font-weight. Example: font-weight: bold

Example: <p>The slabs at the ends of letter strokes are called
serifs.</p>

...
Keywords or visually emphasized text (bold)

<i>...</i>
Alternative voice (italic)

<s>...</s>
Incorrect text (strike-through)

<u>...</u>
Annotated text (underline)

<small>...</small>
Legal text; small print (smaller type size)

n oT e

It helps me to think about how a screen
reader would read the text. If I don’t
want the word read in a loud, emphatic
tone of voice, but it really should be
bold, then b may be more appropriate
than strong.

Part II, HTML Markup for structure88

The Inline Element Roundup

i

HTML 4.01 definition: Italic

HTML5 definition: Indicates text that is in a different voice or mood than
the surrounding text, such as a phrase from another language, a technical
term, or thought.

CSS alternative: For italic text, use font-style. Example: font-style: italic

Example: <p>Simply change the font and <i>Voila!</i>, a new personal-
ity.</p>

s

HTML 4.01 definition: Strike-through text

HTML5 definition: Indicates text that is incorrect.

CSS Property: To put a line through a text selection, use text-decoration.
Example: text-decoration: line-through;

Example: <p>Scala Sans was designed by <s>Eric Gill</s> Martin
Majoor.</p>

u

HTML 4.01 definition: Underline

HTML5 definition: There are a few instances when underlining has semantic
significance, such as underlining a formal name in Chinese or indicating a
misspelled word after a spell check. Note that underlined text is easily con-
fused as a link and should generally be avoided except for a few niche cases.

CSS Property: For underlined text, use text-decoration. Example: text-
decoration: underline

Example: <p>New York subway signage is set in <u>Halvetica</u>.<p>

small

HTML 4.01 definition: Renders in font smaller than the surrounding text

HTML5 definition: Indicates an addendum or side note to the main text,
such as the legal “small print” at the bottom of a document.

CSS Property: To make text smaller, use font-size. Example: font-size:
80%

Example: <p>Download Jenville Handwriting Font
</p>

<p><small>This font is free for commercial use.</small>
</p>

The Inline Element Roundup

Chapter 5, Marking Up Text 89

Figure 5-10. The default rendering of b, i, u, s, and small elements.

short quotations
Use the quotation (q) element to mark up short quotations, such as “To be
or not to be,” in the flow of text, as shown in this example (Figure 5-11).

Matthew Carter says, <q>Our alphabet hasn't changed in eons.</q>

According to the HTML spec, browsers should add quotation marks around
q elements automatically, so you don’t need to include them in the source
document. And for the most part they do, with the exception of Internet
Explorer versions 7 and earlier. Fortunately, as of this writing, those brows-
ers make up only 5–8% of browser usage, and it’s sure to be significantly
less by the time you read this. If you are concerned about a small percentage
of users seeing quotations without their marks, stick with using quotation
marks in your source, a fine alternative.

Figure 5-11. Nearly all browsers add quotation marks automatically around q elements.

Abbreviations and acronyms
Marking up acronyms and abbreviations with the abbr element provides
useful information for search engines, screen readers, and other devices.
Abbreviations are shortened versions of a word ending in a period (Conn. for
Connecticut, for example). Acronyms are abbreviations formed by the first
letters of the words in a phrase (such as WWW or USA). The title attribute
provides the long version of the shortened term, as shown in this example:

<abbr title="Points">pts.</abbr>
<abbr title="American Type Founders">ATF</abbr>

<q>...</q>
Short inline quotation

Nesting Elements
You can apply two elements to a
string of text (for example, a phrase
that is both a quote and in another
language), but be sure they are
nested properly. That means the inner
element, including its closing tag,
must be completely contained within
the outer element, and not overlap.

<q><i>Je ne sais pas.</i></q>

r E m i N d E r

<abbr>...</abbr>
Abbreviation or acronym

n oT e

In HTML 4.01, there was an acronym
element especially for acronyms, but it
has been made obsolete in HTML5 in
favor of using the abbr for both.

Part II, HTML Markup for structure90

The Inline Element Roundup

Citations
The cite element is used to identify a reference to another document, such
as a book, magazine, article title, and so on. Citations are typically rendered
in italic text by default. Here’s an example:

<p>Passages of this article were inspired by <cite>The Complete Manual
of Typography</cite> by James Felici.</p>

Defining terms
It is common to point out the first and defining instance of a word in a docu-
ment in some fashion. In this book, defining terms are set in blue text. In
HTML, you can identify them with the dfn element and format them visually
using style sheets.

<p><dfn>Script typefaces</dfn> are based on handwriting.</p>

Program code elements
A number of inline elements are used for describing the parts of technical
documents, such as code (code), variables (var), program samples (samp),
and user-entered keyboard strokes (kbd). For me, it’s a quaint reminder of
HTML’s origins in the scientific world (Tim Berners-Lee developed HTML
to share documents at the CERN particle physics lab in 1989).

Code, sample, and keyboard elements typically render in a constant-width
(also called monospace) font such as Courier by default. Variables usually
render in italics.

subscript and superscript
The subscript (sub) and superscript (sup) elements cause the selected text to
display in a smaller size, positioned slightly below (sub) or above (sup) the
baseline. These elements may be helpful for indicating chemical formulas or
mathematical equations.

Figure 5-12 shows how these examples of subscript and superscript typi-
cally render in a browser.

 <p>H₂0</p>

 <p>E=MC²</p>

Figure 5-12. Subscript and superscript

<cite>...</cite>
Citation

<dfn>...</dfn>
Defining term

<code>...</code>
Code

<var>...</var>
Variable

<samp>...</samp>
Program sample

<kbd>...</kbd>
User-entered keyboard strokes

_{...}
Subscript

^{...}
Superscript

The Inline Element Roundup

Chapter 5, Marking Up Text 91

Highlighted text
The new mark element indicates a word that may be considered especially
relevant to the reader. One might use it to call out a search term in a page
of results, to manually call attention to a passage of text, indicate the cur-
rent page in a series. Some designers (and browsers) give marked text a light
colored background as though it was marked with a highlighter marker, as
shown in Figure 5-13.

<p> ... PART I. ADMINISTRATION OF THE GOVERNMENT. TITLE IX.
TAXATION. CHAPTER 65C. MASS. <mark>ESTATE TAX</mark>. Chapter 65C:
Sect. 2. Computation of <mark>estate tax</mark>.</p>

Figure 5-13. Search terms are marked as mark elements and given a yellow background
with a style sheet so they are easier for the reader to find.

Times and machine-readable information
When we look at the phrase “noon on November 4,” we know that it is a
date and a time. But the context might not be so obvious to a computer pro-
gram. The time element allows us to mark up dates and times in a way that
is comfortable for a human to read, but also encoded in a standardized way
that computers can use. The content of the element presents the informa-
tion to people, and the datetime attribute presents the same information in
a machine-readable way.

The time element indicates dates, times, or date-time combos. It might be
used to pass the date and time information to an application, such as saving
an event to a personal calendar. It might be used by search engines to find
the most recently published articles. Or it could be used to restyle time infor-
mation into an alternate format (e.g., changing 18:00 to 6 p.m.).

The datetime attribute specifies the date and/or time information in a stan-
dardized time format illustrated
in Figure 5-14. It begins with the
date (year, month, day), followed
by the letter T to indicate time,
listed in hours, minutes, seconds
(optional), and milliseconds (also
optional). Finally, the time zone
is indicated by the number of
hours behind (–) or ahead (+) of
Greenwich Mean Time (GMT).
For example, “–05:00” indicates
the Eastern Standard time zone,
which is five hours behind GMT.

<mark>...</mark>
Contextually relevant text

s U p p o R T a L e R T

The mark element is not supported in
Internet Explorer versions 8 and ear-
lier (see the sidebar HTML5 Support in
Internet Explorer earlier in this chapter
for a workaround). Older versions of
Firefox and Safari (prior to 3.6 and 4,
respectively) do not support it according
to the spec, but do allow you to apply
styles to it.

<time>...</time>
Time data

YYYY-MM-DDThh:mm:ss±HH:MM

year month day

hour
minute

second
(optional)

hour minutes

A “T” always
precedes time

information

+ or - for hours ahead
or behind Greenwich

Mean Time

TIME

DATE TIME ZONE

Example:

3pm PST on December 25, 2012

2012-12-25T15:00-8:00

n oT e

The time element is not intended for
marking up times for which a precise
time or date cannot be established, such
as “the end of last year” or “the turn of
the century.”

Figure 5-14. Standardized date and time
syntax.

Part II, HTML Markup for structure92

The Inline Element Roundup

The WHATWG HTML specification includes a pubdate attribute for indi-
cating that the time is the publication date of a document, as shown in this
example. The pubdate attribute is not included in the W3C HTML5 spec as
of this writing, but it may be included at a later date if it becomes widely
used.

Written by Jennifer Robbins (<time datetime="2012-09-01T 20:00-05:00"
pubdate>September 1, 2012, 8pm EST</time>)

The WHATWG also includes the data element for helping computers make
sense of content, which can be used for all sorts of data, including dates,
times, measurements, weights, and so on. It uses the value attribute for the
machine-readable information. Here are a couple of examples:

<data value="12">Twelve</data>
<data value="2011-11-12">Last Saturday</data>

I’m not going to go into more detail on the data element, because as of this
writing, the powers that be are still discussing exactly how it should work,
and the W3C has not adopted it for the HTML5 spec. Also, as a beginner,
you are unlikely to be dealing with machine-readable data yet anyway. But
still, it is interesting to see how markup can be used to provide usable infor-
mation to computer programs and scripts as well as to your fellow humans.

Inserted and deleted text
The ins and del elements are used to mark up edits indicating parts of a
document that have been inserted or deleted (respectively). These elements
rely on style rules for presentation (i.e., there is no dependable browser
default). Both the ins and del elements can contain either inline or block
elements, depending on what type of content they contain.

Chief Executive Officer: <del title="retired">Peter Pan<ins>Pippi
Longstockings</ins>

Adding Breaks

Line breaks
Occasionally, you may need to add a line break within the flow of text.
We’ve seen how browsers ignore line breaks in the source document, so we
need a specific directive to tell the browser to “add a line break here.”

The inline line break element (br) does exactly that. The br element could be
used to break up lines of addresses or poetry. It is an empty element, which
means it does not have content. Just add the br element (
 in XHTML)
in the flow of text where you want a break to occur, as shown in here and
in Figure 5-15.

<p>So much depends
upon

a red wheel
barrow</p>

<data>...</data>
Machine-readable data

s U p p o R T a L e R T

Both time and data are new elements
and are not universally supported as of
this writing. However, you can apply
styles to them and they will be recog-
nized by browsers other than IE8 and
earlier.

<ins>...</ins>
Inserted text

...
Deleted text

Line break

Figure 5-15. Line breaks are inserted at
each br element.

The Inline Element Roundup

Chapter 5, Marking Up Text 93

Accommodating Non-Western Languages
Because the Web is “world-wide,” there are a few elements
designed to address the needs of non-western languages.

Changing direction
The bdo (bidirectional override) element allows a phrase in a
right-to-left (rtl) reading language (such as Hebrew or Arabic)
to be included in a left-to-right (ltr) reading flow, or vice versa.

This is how you write Shalom: <bdo dir="rtl">�
5E9;לום</bdo>

The bdi (bidirectional isolation) element is similar, but it is used
to isolate a selection that might read in a different direction,
such as a name or comment added by a user.

Hints for East Asian languages
HTML5 also includes the ruby, rt, and rp elements used to add
ruby annotation to East Asian languages. Ruby annotations are
little notes that typically appear above ideographs and provide

pronunciation clues or translations. Within the ruby element,
the rt element indicates the helpful ruby text. Browsers that
support ruby text typically display it in a smaller font above the
main text. As a backup for browsers that don’t support ruby, you
can put the ruby text in parentheses, each marked with the rp
element. Non-supporting browsers display all the text on the
same line, with the ruby in parentheses. Supporting browsers
ignore the content of the rp elements and display only the rt
text above the glyphs. The Ruby system has spotty browser
support as of this writing.

<ruby>
 <rp>(</rp><rt>han</rt><rp>)<rp>
 <rp>(</rp><rt>zi</rt><rp>)<rp>
</ruby>

This example was taken from the HTML5 Working Draft at
whatwg.com, used with permission under an MIT License.

Unfortunately, the br element is easily abused (see the following warning).
Consider whether using the CSS white-space property (introduced in Chapter
12, Formatting Text) might be a better alternative for maintaining line breaks
from your source without extra markup.

Word breaks

<wbr>
Word break

The word break (wbr) element lets you mark the place where a word should
break if it needs to (a “line break opportunity” according to the spec). It
takes some of the guesswork away from the browser and allows authors to
specify the best spot for the word to be split over two lines. Keep in mind
that the word breaks at the wbr element only if it needs to (Figure 5-16). If
there is enough room, the word stays in one piece. Browsers have supported
this element for a long time, but it has recently been incorporated into the
HTML standard.

<p>The biggest word you’ve ever heard and this is how it goes:
supercali<wbr>fragilistic<wbr>expialidocious!</p>

Figure 5-16. When there is not enough room for a word to fit on a line, it will break at the
location of the wbr element.

wa R n i n G

Be careful that you aren’t using br ele-
ments to force breaks into text that
really ought to be a list. For example,
don’t do this:

<p>Times

Georgia

Garamond
</p>

If it’s a list, use the semantically correct
unordered list element instead, and turn
off the bullets with style sheets.

 Times
 Georgia
 Garamond

Part II, HTML Markup for structure94

The Inline Element Roundup

exercise 5-2 | Identifying inline elements
This little post for the Black Goose Bistro blog will give you an opportunity to identify
and mark up a variety of inline elements. See if you can find phrases to mark up
accurately with the following elements:

b br cite dfn em i q small time
Because markup is always somewhat subjective, your resulting markup may not look
exactly like the example in Appendix A, but there is an opportunity to use all of the
elements listed above in the article. For extra credit, there is a phrase that should have
two elements applied to it (remember to nest them properly by closing the inner
element before you close the outer one).

You can write the tags right on this page. Or, if you want to use a text editor and see
the results in a browser, this text file is available online at www.learningwebdesign.
com/4e/materials. The resulting code appears in Appendix A.

<article>

 <header>

 <p>posted by BGB, November 15, 2012</p>

 </header>

<h1>Low and Slow</h1>

<p>This week I am extremely excited about a new cooking technique

called sous vide. In sous vide cooking, you submerge the food

(usually vacuum-sealed in plastic) into a water bath that is

precisely set to the target temperature you want the food to be

cooked to. In his book, Cooking for Geeks, Jeff Potter describes

it as ultra-low-temperature poaching.</p>

<p>Next month, we will be serving Sous Vide Salmon with Dill

Hollandaise. To reserve a seat at the chef table, contact us

before November 30.</p>

<p>blackgoose@example.com

555-336-1800</p>

<p> Warning: Sous vide cooked salmon is not pasteurized. Avoid it

if you are pregnant or have immunity issues.</p>

</article>

mailto:blackgoose@example.com

Generic Elements (div and span)

Chapter 5, Marking Up Text 95

Generic Elements (div and span)
What if none of the elements we’ve talked about so far accurately describes
your content? After all, there are endless types of information in the world,
but as you’ve seen, not all that many semantic elements. Fortunately, HTML
provides two generic elements that can be customized to describe your
content perfectly. The div element indicates a division of content, and span
indicates a word or phrase for which no text-level element currently exists.
The generic elements are given meaning and context with the id and class
attributes, which we’ll discuss in a moment.

The div and span elements have no inherent presentation qualities of their
own, but you can use style sheets to format them however you like. In fact,
generic elements are a primary tool in standards-based web design because
they enable authors to accurately describe content and offer plenty of
“hooks” for adding style rules. They also allow elements on the page to be
accessed and manipulated by JavaScript.

We’re going to spend a little time on div and span (as well as the id and
class attributes) and learn how authors use them to structure content.

Divide it up with a div
The div element is used to create a logical grouping of content or elements
on the page. It indicates that they belong together in some sort of conceptual
unit or should be treated as a unit by CSS or JavaScript. By marking related
content as a div and giving it a unique id identifier or indicating that it is
part of a class, you give context to the elements in the grouping. Let’s look
at a few examples of div elements.

In this example, a div element is used as a container to group an image and
two paragraphs into a product “listing.”

<div class="listing">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p>A combination of type history and examples of good and bad type
design.</p>
</div>

By putting those elements in a div, I’ve made it clear that they are conceptu-
ally related. It will also allow me to style two p elements within listings dif-
ferently than other paragraphs on the page.

Here is another common use of a div used to break a page into sections
for layout purposes. In this example, a heading and several paragraphs are
enclosed in a div and identified as the “news” division.

<div id="news">
 <h1>New This Week</h1>
 <p>We've been working on...</p>
 <p>And last but not least,... </p>
</div>

<div>...</div>
Generic block-level element

...
Generic inline element

It is possible to nest div elements
within other div elements, but don’t
go overboard. You should always
strive to keep your markup as simple
as possible, so add a div element only
if it is necessary for logical structure,
styling, or scripting.

m A r k u p T i p

Part II, HTML Markup for structure96

Generic Elements (div and span)

Now that I have an element known as “news,” I could use a style sheet to
position it as a column to the right or left of the page. You might be think-
ing, “Hey Jen, couldn’t you use a section element for that?” You could! In
fact, authors may turn to generic divs less now that we have better semantic
grouping elements in HTML5.

Get inline with span
A span offers the same benefits as the div element, except it is used for phrase
elements and does not introduce line breaks. Because spans are inline ele-
ments, they can only contain text and other inline elements (in other words,
you cannot put headings, lists, content-grouping elements, and so on, in a
span). Let’s get right to some examples.

There is no telephone element, but we can use a span to give meaning to
telephone numbers. In this example, each telephone number is marked up
as a span and classified as “tel”:

 John: 999.8282
 Paul: 888.4889
 George: 888.1628
 Ringo: 999.3220

You can see how the classified spans add meaning to what otherwise might
be a random string of digits. As a bonus, the span element enables us to
apply the same style to phone numbers throughout the site (for example,
ensuring line breaks never happen within them, using a CSS white-space:
nowrap declaration). It makes the information recognizable not only to
humans but to computer programs that know that “tel” is telephone number
information. In fact, some values—including “tel”—have been standardized
in a markup system known as Microformats that makes web content more
useful to software (see the Microformats and Metadata sidebar).

id and class attributes
In the previous examples, we saw the id and class attributes used to provide
context to generic div and span elements. id and class have different pur-
poses, however, and it’s important to know the difference.

Identification with id
The id attribute is used to assign a unique identifier to an element in the
document. In other words, the value of id must be used only once in the
document. This makes it useful for assigning a name to a particular element,
as though it were a piece of data. See the sidebar id and class Values for
information on providing values for the id attribute.

This example uses the books’ ISBN numbers to uniquely identify each list-
ing. No two book listings may share the same id.

id and class Values
The values for id and class
attributes should start with a letter
(A–Z or a–z) or underscore (although
Internet Explorer 6 and earlier have
trouble with underscores, so they
are generally avoided). They should
not contain any character spaces or
special characters. Letters, numbers,
hyphens, underscores, colons, and
periods are OK. Also, the values are
case-sensitive, so “sectionB” is not
interchangeable with “Sectionb.”

Generic Elements (div and span)

Chapter 5, Marking Up Text 97

<div id="ISBN0321127307">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p>A combination of type history and examples of good and bad type.
 </p>
</div>

<div id="ISBN0881792063">

 <p><cite>The Elements of Typographic Style</cite>, Robert Bringhurst
 </p>
 <p>This lovely, well-written book is concerned foremost
 with creating beautiful typography.</p>
</div>

Web authors also use id when identifying the various sections of a page. In
the following example, there may not be more than one element with the id
of “main,” “links,” or “news” in the document.

<section id="main">
 <!-- main content elements here -->
</section>

<section id="news">
 <!-- news items here -->
</section>

<aside id="links">
 <!-- list of links here -->
</aside>

Microformats and Metadata
As you’ve seen, the elements in HTML fall short in describing
every type of information. A group of developers decided that if
class names could be standardized (for example, always using
“tel” for telephone numbers), they could establish systems for
describing data to make it more useful. This system is called
Microformats. Microformats extend the semantics of HTML
markup by establishing standard values for id, class, and rel
attributes rather than creating whole new elements.

There are several Microformat “vocabularies” used to identify
things such as contact information (hCard) or calendar items
(hCalendar). The Microformats.org site is a good place to learn
about them. To give you the general idea, the following example
describes the parts of an event using the hCalendar Microformat
vocabulary so the browser can automatically add it to your
calendar program.

<section class="vevent">
 O'Reilly Emerging
 Technology Conference,
 <time class="dtstart" datetime="20110306">Mar 6
 </time> -
 <time class="dtend" datetime="20110310">10,
 2011</time>

 <div class="location">Manchester Grand Hyatt,
 San Diego, CA</div>
 <a class="url" href="http://events.example.com
 pub/e/403">Permalink
</section>

The hCard vocabulary identifies components of typical contact
information (stored in vCard format), including: address (adr),
postal code (postal-code), states (region), and telephone
numbers (tel), to name a few. The browser can then use
a service to grab the information from the web page and
automatically add it to an address book.

There is a lot more to say about Microformats than I can fit
in this book. And not only that, but there are two additional,
more complex systems for adding metadata to web pages
in development at the W3C: RDFa and Microdata. It’s not
clear how they are all going to shake out in the long run,
and I’m thinking that this metadata stuff is more than you
want to take on right now anyway. But when you are ready
to learn more, WebSitesMadeRight.com has assembled a
great big list of introductory articles and tutorials on all three
options: websitesmaderight.com/2011/05/html5-microdata-
microformats-and-rdfa-tutorials-and-resources/.

Not Just for divs
The id and class attributes may be
used with all elements in HTML5,
not just div and span. For example,
you could identify an ordered list as
“directions” instead of wrapping it in
a div.

<ol id="directions">
 ...
 ...
 ...

Note that in HTML 4.01, id and
class may be used with all elements
except base, basefont, head, html,
meta, param, script, style, and title.

Part II, HTML Markup for structure98

Generic Elements (div and span)

Classification with class
The class attribute classifies elements into conceptual groups; therefore,
unlike the id attribute, multiple elements may share a class name. By mak-
ing elements part of the same class, you can apply styles to all of the labeled
elements at once with a single style rule or manipulate them all with a script.
Let’s start by classifying some elements in the earlier book example. In this
first example, I’ve added class attributes to classify each div as a “listing”
and to classified paragraphs as “descriptions.”

<div id="ISBN0321127307" class="listing">
 <header>

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 </header>
 <p class="description">A combination of type history and examples of
good and bad type.</p>
</div>

<div id="ISBN0881792063" class="listing">
 <header>

 <p><cite>The Elements of Typographic Style</cite>, Robert Bringhurst
 </p>
 </header>
 <p class="description">This lovely, well-written book is concerned
foremost with creating beautiful typography.</p>
</div>

Notice how the same element may have both a class and an id. It is also
possible for elements to belong to multiple classes. When there is a list of
class values, simply separate them with character spaces. In this example,
I’ve classified each div as a “book” to set them apart from possible “cd” or
“dvd” listings elsewhere in the document.

<div id="ISBN0321127307" class="listing book">

 <p><cite>The Complete Manual of Typography</cite>, James Felici</p>
 <p class="description">A combination of type history and examples of
good and bad type.</p>
</div>

<div id="ISBN0881792063" class="listing book">

 <p><cite>The Elements of Typographic Style</cite>, Robert Bringhurst
 </p>
 <p class="description">This lovely, well-written book is concerned
 foremost with creating beautiful typography.</p>
</div>

This should have given you a good introduction to how div and span ele-
ments with class and id attributes are used to add meaning and organi-
zation to documents. We’ll work with them even more in the style sheet
chapters in Part III.

The id attribute is used to identify.
The class attribute is used to classify.

T i p

some special Characters

Chapter 5, Marking Up Text 99

some special Characters
There’s just one more text-related topic before we close this chapter out.

Some common characters, such as the copyright symbol ©, are not part of
the standard set of ASCII characters, which contains only letters, numbers,
and a few basic symbols. Other characters, such as the less-than symbol (<),
are available, but if you put one in an HTML document, the browser will
interpret it as the beginning of a tag.

Characters such as these must be escaped in the source document. Escaping
means that instead of typing in the character itself, you represent it by its
numeric or named character reference. When the browser sees the character
reference, it substitutes the proper character in that spot when the page is
displayed.

There are two ways of referring to a specific character: by an assigned
numeric value (numeric entity) or using a predefined abbreviated name for
the character (called a named entity). All character references begin with an
“&” and end with a “;”.

Some examples will make this clear. I’d like to add a copyright symbol to my
page. The typical Mac keyboard command, Option-G, which works in my
word processing program, may not be understood properly by a browser or
other software. Instead, I must use the named entity © (or its numeric
equivalent, ©) where I want the symbol to appear (Figure 5-17).

<p>All content copyright © 2012, Jennifer Robbins</p>

or:

<p>All content copyright © 2012, Jennifer Robbins</p>

HTML defines hundreds of named entities as part of the markup language,
which is to say you can’t make up your own entity. Table 5-2 lists some com-
monly used character references. If you’d like to see them all, the complete
list of character references has been assembled online by the nice folks at
the Web Standards Project at www.webstandards.org/learn/reference/charts/
entities/.

Figure 5-17. The special character is substituted for the character reference when the
document is displayed in the browser.

n oT e

In XHTML, every instance of an amper-
sand must be escaped so that it is not
interpreted as the beginning of a char-
acter entity, even when it appears in the
value of an attribute. For example:

<img src="sno.jpg" alt="Sifl
& Olly Show" />

http://www.webstandards.org/learn/reference/charts/entities/
http://www.webstandards.org/learn/reference/charts/entities/

Part II, HTML Markup for structure100

Putting It All Together

Table 5-2. Common special characters and their character references

Character Description Name Number

 Character space (nonbreak-
ing space)

& Ampersand & &

‘ Apostrophe ' '

< Less-than symbol (useful for
displaying markup on a web
page)

< <

> Greater-than symbol (useful
for displaying markup on a
web page)

> >

© Copyright © ©

® Registered trademark ® ®

™ Trademark ™ ™

£ Pound £ £

¥ Yen ¥ ¥

€ Euro € €

– En-dash – –

— Em-dash — —

‘ Left curly single quote ‘ ‘

’ Right curly single quote ’ ’

“ Left curly double quote “ “

” Right curly double quote ” ”

• Bullet • •

... Horizontal ellipsis … …

Putting It All Together
So far, you’ve learned how to mark up elements, and you’ve met all of the
HTML elements for adding structure and meaning to text content. Now
it’s just a matter of practice. Exercise 5-3 gives you an opportunity to try
out everything we’ve covered so far: document structure elements, block
elements, inline elements, sectioning elements, and character entities. Have
fun!

Non-breaking
spaces
One interesting character to know
about is the non-breaking space
(). Its purpose is to ensure that
a line doesn’t break between two
words. So, for instance, if I mark up
my name like this:

Jennifer Robbins

I can be sure that my first and last
names will always stay together on
a line.

Remember that indenting each
hierarchical level in your HTML source
consistently makes the document
easier to scan and update later.

T i p

Putting It All Together

Chapter 5, Marking Up Text 101

exercise 5-3 | The Black Goose Blog page
Now that you’ve been introduced to all of the text elements,
you can put them to work by marking up the Blog page for the
Black Goose Bistro site. The content is shown below (the second
post is already marked up with the inline elements from Exercise
5-2). Get the starter text file online at www.learningwebdesign.
com/4e/materials. The resulting markup is in Appendix A and
included in the materials folder.

Once you have the text file, follow the instructions listed after
the copy. The resulting page is shown in Figure 5-18.

The Black Goose Blog

Home
Menu
Blog
Contact

Summer Menu Items
posted by BGB, June 15, 2013
Our chef has been busy putting together the
perfect menu for the summer months. Stop by to
try these appetizers and main courses while the
days are still long.

Appetizers
Black bean purses
Spicy black bean and a blend of mexican cheeses
wrapped in sheets of phyllo and baked until
golden. $3.95

Southwestern napoleons with lump crab -- new
item!
Layers of light lump crab meat, bean and corn
salsa, and our handmade flour tortillas. $7.95

Main courses

Shrimp sate kebabs with peanut sauce
Skewers of shrimp marinated in lemongrass, garlic,
and fish sauce then grilled to perfection. Served
with spicy peanut sauce and jasmine rice. $12.95

Jerk rotisserie chicken with fried plantains --
new item!
Tender chicken slow-roasted on the rotisserie,
flavored with spicy and fragrant jerk sauce and
served with fried plantains and fresh mango.
$12.95

Low and Slow
posted by BGB, November 15, 2012
<p>This week I am extremely excited

about a new cooking technique called <dfn><i>sous
vide</i></dfn>. In <i>sous vide</i> cooking,
you submerge the food (usually vacuum-sealed in
plastic) into a water bath that is precisely
set to the target temperature of the food. In
his book, <cite>Cooking for Geeks</cite>, Jeff
Potter describes it as <q>ultra-low-temperature
poaching</q>.</p>

<p>Next month, we will be serving Sous Vide
Salmon with Dill Hollandaise. To reserve
a seat at the chef table, contact us before
November 30.</p>

Location: Baker’s Corner, Seekonk, MA
Hours: Tuesday to Saturday, 11am to midnight

All content copyright © 2012, Black Goose
Bistro and Jennifer Robbins

Figure 5-18. The finished menu page.

1. Add all the document structure elements first (html, head,
meta, title, and body). Give the document the title “Black
Goose Bistro: Blog.”

Part II, HTML Markup for structure102

Test Yourself

2. The first thing we’ll do is identify the top-level heading and
the list of links as the header for the document by wrapping
them in a header element (don’t forget the closing tag).
Within the header, the headline should be an h1 and the list
of links should be an unordered list (ul). Don’t worry about
making the list items links; we’ll get to linking in the next
chapter. Give the list more meaning by identifying it as the
primary navigation for the site (nav).

3. This blog page has two posts titled “Summer Menu Items”
and “Low and Slow.” Mark each one up as an article.

4. Now we’ll get the first article into shape! Let’s create a
header for this article that contains the heading (h2 this time
because we’ve moved down in the document hierarchy)
and the publication information (p). Identify the publication
date for the article with the time element, just as you did in
Exercise 5-2.

5. The content after the header is clearly a simple paragraph.
However, the menu has some interesting things going on. It
is divided into two conceptual sections (Appetizers and Main
Courses), so mark those up as section elements. Be careful
that the closing section tag (</section>) appears before the
closing article tag (</article>) so the elements are nested
correctly and don’t overlap. Finally, let’s identify the sections
with id attributes. Name the first one “appetizers” and the
second “maincourses.”

6. With our sections in place, now we can mark up the content.
We’re down to h3 for the headings in each section. Choose
the most appropriate list elements to describe the menu
item names and their descriptions. Mark up the lists and each
item within the lists.

7. Now we can add a few fine details. Classify each price as
“price” using span elements.

8. Two of the dishes are new items. Change the double
hyphens to an em-dash character and mark up “new items!”

as “strongly important.” Classify the title of each new dish as
“newitem” (hint, use the existing dt element; there is no need
to add a span this time). This allows us to target menu titles
with the “newitem” class and style them differently than other
menu items.

9. That takes care of the first article. The second article is already
mostly marked up from the previous exercise, but you should
mark up the header with the appropriate heading and
publication information.

10. So far so good, right? Now make the remaining content
that applies to the whole page a footer. Mark each line of
content within the footer as a paragraph.

11. Let’s give the location and hours information some context
by putting them in a div named “about.” Make the labels
“Location” and “Hours” appear on a line by themselves by
adding line breaks after them. If you’d like, you could also
mark up the hours with the time element.

12. Finally, copyright information is typically “small print” on a
document, so mark it up accordingly. As the final touch, add
a copyright symbol after the word “copyright.”

Save the file, name it bistro_blog.html, and check your page in
a modern browser (remember that IE 8 and earlier won’t know
what to do with those new HTML5 sectioning elements). How
did you do?

Markup tips:

 y Choose the element that best fits the meaning of the
selected text.

 y Don’t forget to close elements with closing tags.

 y Put all attribute values in quotation marks for clarity

 y “Copy and paste” is your friend when adding the same
markup to multiple elements. Just be sure what you copied
is correct before you paste it throughout the document.

Test Yourself
Were you paying attention? Here is a rapid-fire set of questions to find out.

1. Add the markup to add a thematic break between these paragraphs.

 <p>People who know me know that I love to cook.</p>

 <p>I've created this site to share some of my favorite
 recipes.</p>

2. What’s the difference between a blockquote and a q element?

Test Yourself

Chapter 5, Marking Up Text 103

3. Which element displays whitespace exactly as it is typed into the source
document?

4. What is the difference between a ul and an ol?

5. How do you remove the bullets from an unordered list? (Be general, not
specific.)

6. What element would you use to provide the full name of the W3C
(World Wide Web Consortium) in the document? Can you write out the
complete markup?

7. What is the difference between a dl and a dt?

8. What is the difference between id and class?

9. What is the difference between an article and a section?

10. Name and write the characters generated by these character entities:

 —___________ & ___________

 ___________ © ___________

 • ___________ ™ ___________

Want More Practice?
Try marking up your own résumé.
Start with the raw text, and then
add document structure elements,
content grouping elements, then
inline elements as we’ve done
in Exercise 5-3. If you don’t see
an element that matches your
information just right, try creating
one using a div or a span.

Part II, HTML Markup for structure104

Test Yourself

Page sections

address author contact information

article (5) self-contained content

aside (5) tangential content (sidebar)

footer (5) related content
header (5) introductory content
nav (5) primary navigation

section (5) conceptually related group of content

Heading content

h1...h6 headings, levels 1 through 6
hgroup heading group

Grouping content

blockquote blockquote
div generic division

figure (5) related image or resource

figcaption (5) text description of a figure

hr paragraph-level thematic break
(horizontal rule)

p paragraph
pre preformatted text

List elements

dd definition

dl definition list
dt term
li list item (for ul and ol)
ol ordered list
ul unordered list
Breaks

br line break

wbr (5) word break

Element Review: Text
The following is a summary of the elements we covered in this chapter. New
HTML5 elements are indicated by “(5).” The data element is included only
in the WHATWG HTML version as of this writing.

Phrasing elements

abbr abbreviation

b added visual attention (bold)

bdi (5) possible direction change

bdo bidirectional override

cite citation

code code sample

data (WHATWG) machine-readable equivalent

del deleted text

dfn defining term

em stress emphasis

i alternate voice (italic)

ins inserted text

kbd keyboard text

mark (5) highlighted text

q short inline quotation

ruby (5) section containing ruby text

rp (5) parentheses in ruby text

rt (5) ruby annotations

s strike-through; incorrect text

samp sample output

small annotation; “small print”

span generic phrase of text

strong strong importance

sub subscript

sub superscript

time (5) machine-readable time data

u added attention (underline)

var variable

105

If you’re creating a page for the Web, chances are you’ll want it to point to
other web pages and resources, whether on your own site or someone else’s.
Linking, after all, is what the Web is all about. In this chapter, we’ll look at
the markup that makes links work: to other sites, to your own site, and within
a page. There is one element that makes linking possible: the anchor (a).

To make a selection of text a link, simply wrap it in opening and closing
<a>... tags and use the href attribute to provide the URL of the target
page. The content of the anchor element becomes the hypertext link. Here is
an example that creates a link to the O’Reilly Media website:

Go to the O'Reilly Media site

To make an image a link, simply put the img element in the anchor element:

<img src="orm.gif" alt="O'Reilly
tarsier logo">

Nearly all graphical browsers display linked text as blue and underlined by
default. Some older browsers put a blue border around linked images, but
most current ones do not. Visited links generally display in purple. Users
can change these colors in their browser preferences, and, of course, you can
change the appearance of links for your sites using style sheets. I’ll show you
how in Chapter 13, Colors and Backgrounds.

wa R n i n G

One word of caution: if you choose to change your link colors, keep them consistent
throughout your site so as not to confuse your users.

When a user clicks or taps on the linked text or image, the page you specify
in the anchor element loads in the browser window. The linked image mark-
up sample shown previously might look like Figure 6-1.

<a>...
Anchor element (hypertext link)

Anchor syntax
The simplified structure of the anchor
element is:

linked text
or element

A T A G L A N C E

aDDIng lInks

CHAPTER 6

IN THIs CHAPTER

Making links to
external pages

Making relative links
to documents on your

own server

Linking to a specific
point in a page

Adding "mailto"
and "tel" links

Targeting new windows

Part II, HTML Markup for structure106

The href Attribute

Figure 6-1. When a user clicks or taps on the linked text or image, the page you specified
in the anchor element loads in the browser window.

Starting in HTML5, you can put any element in an a element—even block
elements! In the HTML 4.01 spec and earlier, the anchor element could be
used for inline content only.

The href Attribute
You’ll need to tell the browser which document to link to, right? The href
(hypertext reference) attribute provides the address of the page or resource
(its URL) to the browser. The URL must always appear in quotation marks.
Most of the time you’ll point to other HTML documents; however, you can
also point to other web resources, such as images, audio, and video files.

Because there’s not much to slapping anchor tags around some content, the
real trick to linking comes in getting the URL correct.

There are two ways to specify the URL:

•	 Absolute URLs provide the full URL for the document, including the
protocol (http://), the domain name, and the pathname as necessary.
You need to use an absolute URL when pointing to a document out on
the Web (i.e., not on your own server).

Example: href="http://www.oreilly.com/"

Sometimes, when the page you’re linking to has a long URL pathname,
the link can end up looking pretty confusing (Figure 6-2). Just keep in
mind that the structure is still a simple container element with one attri-
bute. Don’t let the pathname intimidate you.

•	 Relative URLs describe the pathname to a file relative to the current
document. Relative URLs can be used when you are linking to another
document on your own site (i.e., on the same server). It doesn’t require
the protocol or domain name—just the pathname.

Example: href="recipes/index.html"

In this chapter, we’ll add links using absolute and relative URLs to my cook-
ing website, Jen’s Kitchen (see Figure 6-3). Absolute URLs are easy, so let’s
get them out of the way first.

In HTML5, you can put any
element in an a element—
even block elements!

URL Versus URI
The W3C and the development
community are moving away from
the term URL (Uniform Resource
Locator) and toward the more
generic and technically accurate URI
(Uniform Resource Identifier). On the
street and even on the job, however,
you’re still likely to hear URL.

Here’s the skinny on URL versus
URI: A URL is one type of a URI that
identifies the resource by its location
(the L in URL) on the network. The
other type of URI is a URN that
identifies the resource by name or
namespace (the N in URN).

Because it is more familiar, I will
be sticking with URL throughout
the discussions in this chapter. Just
know that URLs are a subset of
URIs, and the terms are often used
interchangeably.

If you like to geek out on this kind of
thing, I refer you to the URI Wikipedia
entry:
en.wikipedia.org/wiki/Uniform_
resource_identifier.

Linking to Pages on the Web

Chapter 6, Adding Links 107

<a href="http://www.amazon.com/s/?ie=UTF8&keywords=

bequet+caramel&tag=googhydr20&index=aps&hvadid=79790

39989&ref=pd_sl_1ah68hbamy_b">Bequet Caramels

Linked textURL

Opening anchor tag

Closing anchor tag

Figure 6-2. An example of a long URL. Although it may make the anchor tag look
confusing, the structure is the same.

Linking to Pages on the Web
Many times, you’ll want to create a link to a page that you’ve found on
the Web. This is known as an “external” link because it is going to a page
outside of your own server or site. To make an external link, you need to
provide the absolute URL, beginning with http:// (the protocol). This tells
the browser, “Go out on the Web and get the following document.”

I want to add some external links to the Jen’s Kitchen home page (Figure 6-3).
First, I’ll link the list item “The Food Network” to the site www.foodtv.com. I
marked up the link text in an anchor element by adding opening and closing
anchor tags. Notice that I’ve added the anchor tags inside the list item (li)
element. That’s because only li elements are permitted to be children of a ul
element; placing an a element directly inside the ul would be invalid HTML.

 <a>The Food Network

Next, I add the href attribute with the complete URL for the site.

 The Food Network

And voila! That’s all there is to it. Now “The Food Network” will appear as
a link and will take my visitors to that site when they click or tap it.

exercise 6-1 | Make an external link
Open the file index.html from the jenskitchen folder. Make the list item “Epicurious”
link to its web page at www.epicurious.com, following my example.

 The Food Network

 Epicurious

When you are done, you can save index.html and open it in a browser. If you have an
Internet connection, you can click on your new link and go to the Epicurious site. If
the link doesn’t take you there, go back and make sure that you didn’t miss anything
in the markup.

URL Wrangling
If you are linking to a page with a
long URL, it is helpful to copy the
URL from the location toolbar in
your browser and paste it into your
document. That way, you avoid
mistyping a single character and
breaking the whole link.

m A r k u p T i p

Work Along with
Jen’s Kitchen

Figure 6-3. Finished Jen’s Kitchen page

All the files for the Jen’s Kitchen
website are available online at www.
learningwebdesign.com/4e/materials.
Download the entire directory,
making sure not to change the way
its contents are organized.

The resulting markup for all of the
exercises is provided in Appendix A.

The pages aren’t much to look at,
but they will give you a chance to
develop your linking skills.

T r y i T

Part II, HTML Markup for structure108

Linking Within Your Own site

Linking Within Your Own site
A large portion of the linking you’ll do will be between pages of your own
site: from the home page to section pages, from section pages to content
pages, and so on. In these cases, you can use a relative URL—one that calls
for a page on your own server.

Without “http://”, the browser looks on the current server for the linked
document. A pathname, the notation used to point to a particular file or
directory, tells the browser where to find the file. Web pathnames follow the
Unix convention of separating directory and filenames with forward slashes
(/). A relative pathname describes how to get to the linked document starting
from the location of the current document.

Relative pathnames can get a bit tricky. In my teaching experience, nothing
stumps beginners like writing relative pathnames, so we’ll take it one step
at a time. There are exercises along the way that I recommend you do as we
go along.

All of the pathname examples in this section are based on the structure of
the Jen’s Kitchen site shown in Figure 6-4. When you diagram the structure
of the directories for a site, it generally ends up looking like an inverted tree
with the root directory at the top of the hierarchy. For the Jen’s Kitchen site,
the root directory is named jenskitchen. For another way to look at it, there
is also a view of the directory and subdirectories as they appear in the Finder
on my Mac (Windows users see one directory at a time).

/
(jenskitchen)

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

The diagram and the view of the
Mac OS Finder reveal the structure
of the jenskitchen directory.

Figure 6-4. A diagram of the jenskitchen site structure.

n oT e

On PCs and Macs, files are organized
into “folders,” but in the web develop-
ment world, it is more common to refer
to the equivalent and more technical
term, “directory.” A folder is just a
directory with a cute icon.

Important
Pathname Don’ts
When you are writing relative
pathnames, it is critical that you
follow these rules to avoid common
errors:

 y Don’t use backslashes (\). Web
URL pathnames use forward
slashes (/) only.

 y Don’t start with the drive name
(D:, C:, etc.). Although your
pages will link to each other
successfully while they are on
your own computer, once they
are uploaded to the web server,
the drive name is irrelevant and
will break your links.

 y Don’t start with file://. This also
indicates that the file is local and
causes the link to break when it is
on the server.

Linking Within Your Own site

Chapter 6, Adding Links 109

Linking within a directory
The most straightforward relative URL points to another file within the same
directory. When link to a file in the same directory, you only need to provide
the name of the file (its filename). When the URL is a single filename, the
server looks in the current directory (that is, the directory that contains the
document with the link) for the file.

In this example, I want to make a link from my home page (index.html) to
a general information page (about.html). Both files are in the same directory
(jenskitchen). So from my home page, I can make a link to the information
page by simply providing its filename in the URL (Figure 6-5):

About the site...

/
(jenskitchen)

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

The diagram shows that index.html and
about.html are in the same directory.

From index.html:
About this page...

The server looks in the same directory as the current document for this file.

Figure 6-5. Writing a relative URL to another document in the same directory.

exercise 6-2 | Link in the same directory
Open the file about.html from the jenskitchen folder. Make the paragraph “Back to the
home page” at the bottom of the page link back to index.html. The anchor element
should be contained in the p element.

<p>Back to the home page</p>

When you are done, you can save about.html and open it in a browser. You don’t
need an Internet connection to test links locally (that is, on your own computer).
Clicking on the link should take you back to the home page.

A link to just the filename
indicates the linked file is
in the same directory as
the current document.

Part II, HTML Markup for structure110

Linking Within Your Own site

Linking to a lower directory
But what if the files aren’t in the same directory? You have to give the
browser directions by including the pathname in the URL. Let’s see how
this works.

Getting back to our example, my recipe files are stored in a subdirectory
called recipes. I want to make a link from index.html to a file in the recipes
directory called salmon.html. The pathname in the URL tells the browser to
look in the current directory for a directory called recipes, and then look for
the file salmon.html (Figure 6-6):

Garlic Salmon

From index.html:
Garlic Salmon

The server looks in the same directory as the current document for the
recipes directory

The diagram shows that salmon.html is
one directory lower than index.html.

/
(jenskitchen)

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

Figure 6-6. Writing a relative URL to a document that is one directory level lower than
the current document.

exercise 6-3 | Link one directory down
Open the file index.html from the jenskitchen folder. Make the list item “Tapenade
(Olive Spread)” link to the file tapenade.html in the recipes directory. Remember to
nest the elements correctly.

Tapenade (Olive Spread)

When you are done, you can save index.html and open it in a browser. You should
be able to click your new link and see the recipe page for tapenade. If not, make sure
that your markup is correct and that the directory structure for jenskitchen matches
the examples.

Linking Within Your Own site

Chapter 6, Adding Links 111

Now let’s link down to the file called couscous.html, which is located in the
pasta subdirectory. All we need to do is provide the directions through two
subdirectories (recipes, then pasta) to couscous.html (Figure 6-7):

Couscous with Peas and Mint

Directories are separated by forward slashes. The resulting anchor tag tells
the browser, “Look in the current directory for a directory called recipes.
There you’ll find another directory called pasta, and in there is the file I’d
like to link to, couscous.html.”

Now that we’ve done two directory levels, you should get the idea of how
pathnames are assembled. This same method applies for relative pathnames
that drill down through any number of directories. Just start with the name
of the directory that is in same location as the current file, and follow each
directory name with a slash until you get to the linked filename.

From index.html:
Couscous

The server looks in the same directory as the current document for the
recipes directory, and then looks for the pasta directory.

The diagram shows that couscous.html is
two directories lower than index.html.

/
(jenskitchen)

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

Figure 6-7. Writing a relative URL to a document that is two directory levels lower than
the current document.

exercise 6-4 | Link two directories down
Open the file index.html from the jenskitchen folder. Make the list item “Linguine with
Clam Sauce” link to the file linguine.html in the pasta directory.

Linguine with Clam Sauce

When you are done, you can save index.html and open it in a browser. Click on the
new link to get the delicious recipe.

When linking to a file
in a lower directory,
the pathname must
contain the names of the
subdirectories you go
through to get to the file.

Part II, HTML Markup for structure112

Linking Within Your Own site

Linking to a higher directory
So far, so good, right? Here comes the tricky part. This time we’re going to
go in the other direction and make a link from the salmon recipe page back
to the home page, which is one directory level up.

In Unix, there is a pathname convention just for this purpose, the “dot-dot-
slash” (../). When you begin a pathname with ../, it’s the same as telling
the browser “back up one directory level” and then follow the path to the
specified file. If you are familiar with browsing files on your desktop, it is
helpful to know that a “../” has the same effect as clicking the “Up” button
in Windows Explorer or the left-arrow button in the Finder on Mac OS X.

Let’s start by making a link from salmon.html back to the home page (index.
html). Because salmon.html is in the recipes subdirectory, we need to back
up a level to jenskitchen to find index.html. This pathname tells the browser
to “go up one level,” then look in that directory for index.html (Figure 6-8):

<p>[Back to home page]</p>

Note that we don’t need to write out the name of the higher directory (jen-
skitchen) in the pathname. The ../ stands in for it.

From salmon.html:
[Back to the home page]

The ../ moves you up one level: from within the recipes directory up and
into the jenskitchen directory. There you find index.html.

The diagram shows that index.html is
one directory level higher than salmon.html.

jenskitchen directory

/
(jenskitchen)

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

recipes

pasta

../

Figure 6-8. Writing a relative URL to a document that is one directory level higher than
the current document.

Each ../ at the beginning
of the pathname tells the
browser to go up one
directory level to look for
the file.

exercise 6-5 | Link to
a higher directory
Open the file tapenade.html from the
recipes directory. At the bottom of
the page, you’ll find this paragraph:

<p>[Back to the home page]</p>

Using the notation described in this
section, make this text link back to
the home page (index.html), located
one directory level up.

Linking Within Your Own site

Chapter 6, Adding Links 113

But how about linking back to the home page from couscous.html? Can you
guess how you’d back your way out of two directory levels? Simple: just use
the dot-dot-slash twice (Figure 6-9).

A link on the couscous.html page back to the home page (index.html) would
look like this:

<p>[Back to home page]</p>

The first ../ backs up to the recipes directory; the second ../ backs up to the
top-level directory where index.html can be found. Again, there is no need to
write out the directory names; the ../ does it all.

From couscous.html:
[Back to the home page]

The first ../ moves you up one level: from within pasta to recipes.
The second ../ moves you from recipes up to jenskitchen.
There you find index.html.

The diagram shows that index.html is two
directory levels higher than couscous.html.

jenskitchen directory

/
jenskitchen

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

recipes

pasta

../

../

Figure 6-9. Writing a relative URL to a document that is two directory levels higher than
the current document.

exercise 6-6 | Link up two directory levels
OK, now it’s your turn to give it a try. Open the file linguine.html and make the last
paragraph link to back to the home page using ../../ as I have done.

<p>[Back to the home page]</p>

When you are done, save the file and open it in a browser. You should be able to link
to the home page.

n oT e

I confess to still sometimes silently
chanting “go-up-a-level, go-up-a-level”
for each ../ when trying to decipher a
complicated relative URL. It helps me
sort things out.

Part II, HTML Markup for structure114

Linking Within Your Own site

site root relative pathnames
All websites have a root directory, which is the directory that contains all the
directories and files for the site. So far, all of the pathnames we’ve looked at
are relative to the document with the link. Another way to write a relative
pathname is to start at the root directory and list the subdirectory names
until you get to the file you want to link to. This kind of pathname is known
as site root relative.

In the Unix pathname convention, a forward slash (/) at the start of the
pathname indicates the path begins at the root directory. The site root rela-
tive pathname in the following link reads, “Go to the very top-level direc-
tory for this site, open the recipes directory, then find the salmon.html file”
(Figure 6-10):

Garlic Salmon

Note that you don’t need to (and you shouldn’t) write the name of the root
directory (jenskitchen) in the path—just start it with a forward slash (/), and
the browser will look in the top-level directory relative to the current file.
From there, just specify the directories the browser should look in.

From any document on the site:
Garlic Salmon

The (/) at the beginning of the path name tells the browser to start at
the root directory (jenskitchen).

/
(jenskitchen)

images/

about.html index.html

recipes/

jenskitchen.gif spoon.gif

salmon.html tapenade.html

pasta/

couscous.html linguine.html

In pathnames, the root directory is
always identified by a slash (/), not
its directory name.

Figure 6-10. Writing a relative URL starting at the root directory.

Because this this type of link starts at the root to describe the pathname, it
will work from any document on the server, regardless of which subdirectory
it may be located in. Site root relative links are useful for content that might
not always be in the same directory, or for dynamically generated material.
They also make it easy to copy and paste links between documents.

On the downside, however, the links won’t work on your local machine,
because they will be relative to your hard drive. You’ll have to wait until the
site is on the final server to check that links are working.

Site root relative links are
generally preferred due to
their flexibility.

Linking Within Your Own site

Chapter 6, Adding Links 115

It’s the same for images
The src attribute in the img element works the same as the href attribute in
anchors when it comes to specifying URLs. Since you’ll most likely be using
images from your own server, the src attributes within your image elements
will be set to relative URLs.

Let’s look at a few examples from the Jen’s Kitchen site. First, to add an
image to the index.html page, the markup would be:

The URL says, “Look in the current directory (jenskitchen) for the images
directory; in there you will find jenskitchen.gif.”

Now for the piece de résistance. Let’s add an image to the file couscous.html:

This is a little more complicated than what we’ve seen so far. This pathname
tells the browser to go up two directory levels to the top-level directory and,
once there, look in the images directory for an image called spoon.gif. Whew!

Of course, you could simplify that path by going the site root relative route,
in which case the pathname to spoon.gif (and any other file in the images
directory) could be accessed like this:

The trade-off is that you won’t see the image in place until the site is upload-
ed to the server, but it does make maintenance easier once it’s there.

exercise 6-7 | Try a few more
Before we move on, you may want to try your hand at writing a few more relative
URLs to make sure you’ve really gotten it. You can just write your answers on the
page, or if you want to test your markup to see whether it works, make changes in
the actual files. You’ll need to add the text to the files to use as the link (for example,
“Go to the Tapenade recipe” for the first question). Answers are in Appendix A.

1. Create a link on salmon.html to tapenade.html.
Go to the Tapenade recipe

2. Create a link on couscous.html to salmon.html.
Try this with Garlic Salmon.

3. Create a link on tapenade.html to linguine.html.
Try the Linguine with Clam Sauce

4. Create a link on linguine.html to about.html.
About Jen’s Kitchen

5. Create a link on tapenade.html to www.allrecipes.com.

Go to Allrecipes.com

A Little Help from
Your Tools
If you use a WYSIWYG authoring tool
to create your site, the tool generates
relative URLs for you. Programs
such as Adobe Dreamweaver and
Microsoft Expression Web have built-
in site management functions that
adjust your relative URLs even if you
reorganize the directory structure.

n oT e

Any of the pathnames in Exercise 6-7
could be site root relative, but write
them relative to the listed document for
the practice.

Part II, HTML Markup for structure116

Linking Within Your Own site

Linking to a specific point in a page
Did you know you can link to a specific point in a web page? This is useful
for providing shortcuts to information at the bottom of a long, scrolling page
or for getting back to the top of a page with just one click or tap. Linking
to a specific point in the page is also referred to as linking to a document
fragment.

Linking to a particular spot within a page is a two-part process. First, you
identify the destination, and then you make a link to it. In the following
example, I create an alphabetical index at the top of the page that links down
to each alphabetical section of a glossary page (Figure 6-11). When users
click on the letter “H,” they’ll jump down on the page to the “H” heading
lower on the page.

step 1: Identifying the destination
I like to think of this step as planting a flag in the document so I can get back
to it easily. To create a destination, use the id attribute to give the target ele-
ment in the document a unique name (that’s “unique” as in the name may
appear only once in the document, not “unique” as in funky and interest-
ing). In web lingo, this is the fragment identifier.

You may remember the id attribute from Chapter 5, Marking Up Text,
where we used it to name generic div and span elements. Here, we’re going
to use it to name an element so that it can serve as a fragment identifier—
that is, the destination of a link.

Here is a sample of the source for the glossary page. Because I want users to
be able to link directly to the “H” heading, I’ll add the id attribute to it and
give it the value “startH” (Figure 6-11 1).

<h1 id="startH">H</h1>

step 2: Linking to the destination
With the identifier in place, now I can make a link to it.

At the top of the page, I’ll create a link down to the “startH” fragment 2.
As for any link, I use the a element with the href attribute to provide the
location of the link. To indicate that I’m linking to a fragment, I use the
octothorpe symbol (#), also called a hash or number symbol, before the
fragment name.

<p>... F | G | H | I | J ...</p>

And that’s it. Now when someone clicks on the “H” from the listing at the
top of the page, the browser will jump down and display the section starting
with the “H” heading 3.

n oT e

Linking to another spot on the same
page works well for long, scrolling
pages, but the effect may be lost on a
short web page.

To the Top!
It is common practice to add a link
back up to the top of the page when
linking into a long page of text. This
alleviates the need to scroll back after
every link.

A u T H o r i N G T i p

n oT e

Remember that id values must start
with a letter or an underscore (although
underscores may be problematic in some
versions of IE).

Fragment names are
preceded by an octothorpe
symbol (#).

Linking Within Your Own site

Chapter 6, Adding Links 117

<h2 id="startH">H</h2>
<dl>
<dt>hexadecimal</dt>
<dd>A base-16 numbering system that uses the characters 0-9 and
A-F. It is used in CSS and HTML for specifying color values</dd>

<p>... | F | G | H | I | J ...</p>

Create a link to the destination. The # before the name is necessary to identify
this as a fragment and not a filename.

Identify the destination using the id attribute.1

2

3

Figure 6-11. Linking to a specific destination within a single web page.

Part II, HTML Markup for structure118

Targeting a New Browser Window

Linking to a fragment in another document
You can link to a fragment in another document by adding the fragment
name to the end of the URL (absolute or relative). For example, to make a
link to the “H” heading of the glossary page from another document in that
directory, the URL would look like this:

See the Glossary, letter H

You can even link to specific destinations in pages on other sites by putting
the fragment identifier at the end of an absolute URL, like so:

See the Glossary,
letter H

Of course, you don’t have any control over the named fragments in other
people’s web pages (see the note). The destination points must be inserted
by the author of those documents in order for them to be available to you.
The only way to know whether they are there and where they are is to “View
Source” for the page and look for them in the markup. If the fragments in
external documents move or go away, the page will still load; the browser
will just go to the top of the page as it does for regular links.

Targeting a New Browser Window
One problem with putting links on your page is that when people click on
them, they may never come back. The traditional solution to this dilemma
has been to make the linked page open in a new browser window. That way,
your visitors can check out the link and still have your content available
where they left it.

Before I provide the instructions for how to do it, I am going to strongly
advise against it. First of all, tabbed browsers make it somewhat less likely
that users will never find their way back to the original page. Furthermore,
opening new windows is problematic for accessibility. New windows may be
confusing to some users, particularly those who are accessing your site via
a screen reader or even on a small-screen device. At the very least, new win-
dows may be perceived as an annoyance rather than a convenience. Because
it is common to configure your browser to block pop-up windows, you risk
having the users miss out on the content in the new window altogether.

So consider carefully whether you need a separate window at all, and I’ll tell
you how in case you have a very good reason to do it. The method you use
to open a link in a new browser window depends on whether you want to
control its size. If the size of the window doesn’t matter, you can use HTML
markup alone. However, if you want to open the new window with particu-
lar pixel dimensions, then you need to use JavaScript.

n oT e

Some developers help their brothers
and sisters out by proactively adding
ids as anchors at the beginning of any
thematic section of content (within a
reasonable level, and depending on the
site). That way other people can link
back to any section in your content.

exercise 6-8 |
Linking to a
fragment
Want some practice linking to
specific destinations? Open the file
glossary.html in the materials folder
for this chapter. It looks just like the
document in Figure 6-11.

1. Identify the h2 “A” as a destination
for a link by naming it “startA” with
an id attribute.

<h2 id="startA">A</h2>

2. Make the letter “A” at the top of
the page a link to the identified
fragment. Don’t forget the #.

A

Repeat steps 1 and 2 for every letter
across the top of the page until you
really know what you are doing (or
until you can’t stand it anymore). You
can help users get back to the top of
the page, too.

3. Make the heading “Glossary” a
destination named “top.”

<h1 id="top">Glossary</h1>

4. Add a paragraph element
containing “TOP” at the end of
each lettered section. Make “TOP”
a link to the identifier that you just
made at the top of the page.

<p>TOP</
p>

Copy and paste this code to the
end of every letter section. Now
your readers can get back to the top
of the page easily throughout the
document.

Mail Links

Chapter 6, Adding Links 119

A new window with markup
To open a new window using markup, use the target attribute in the anchor
(a) element to tell the browser the name of the window in which you want
the linked document to open. Set the value of target to _blank or to any name
of your choosing. Remember that with this method, you have no control
over the size of the window, but it will generally open as a new tab or in a
new window the same size as the most recently opened window in the user’s
browser.

Setting target="_blank" always causes the browser to open a fresh window.
For example:

O'Reilly

If you target “_blank” for every link, every link will launch a new window,
potentially leaving your user with a mess of open windows.

A better method is to give the target window a specific name, which can then
be used by subsequent links. You can give the window any name you like
(“new,” “sample,” whatever), as long as it doesn’t start with an underscore.
The following link will open a new window called “display”:

O'Reilly

If you target the “display” window from every link on the page, each linked
document will open in the same second window. Unfortunately, if that sec-
ond window stays hidden behind the user’s current window, it may look as
though the link simply didn’t work.

Pop-up windows
It is possible to open a window with specific dimensions and various parts
of the browser chrome (toolbars, scrollbars, etc.) turned on or off; however,
it takes JavaScript to do it. These are known as pop-up windows, and they
are commonly used for advertising. In fact, they’ve become such a nuisance
that many browsers have preferences for turning them off completely.
Furthermore, in a world where sites are accessed on small, mobile devices,
popping up windows at specific pixel dimensions has no place.

That said, if you have a valid reason to open a new browser window at
a specific size, I recommend this tutorial article by Peter-Paul Koch at
Quirksmode: www.quirksmode.org/js/popup.html.

Mail Links
Here’s a nifty little linking trick: the mailto link. By using the mailto pro-
tocol in a link, you can link to an email address. When the user clicks on
a mailto link, the browser opens a new mail message preaddressed to that
address in a designated mail program.

Part II, HTML Markup for structure120

Telephone Links

A sample mailto link is shown here:

Contact Al Klecker

As you can see, it’s a standard anchor element with the href attribute. But
the value is set to mailto:name@address.com.

The browser has to be configured to launch a mail program, so the effect
won’t work for 100% of your audience. If you use the email itself as the
linked text, nobody will be left out if the mailto function does not work (a
nice little example of progressive enhancement).

Telephone Links
Keep in mind that the smartphones people are using to access your website
can also be used to make phone calls! Why not save your visitors a step by
letting them dial a phone number on your site simply by tapping on it on the
page? The syntax uses the tel: scheme and is very simple.

Call us free at (800) 555-1212

When mobile users tap the link, they get an alert box asking them to confirm
that they’d like to call the number. This feature is supported on most mobile
devices, including iOS, Android, Blackberry, Symbian, Internet Explorer,
and Opera Mini. The iPad and iPod Touch can’t make a call, but they will
offer to create a new contact from the number. Nothing happens when
desktop users click the link. If that bothers you, you could use a CSS rule
that hides the link for non-mobile devices (unfortunately, that is beyond the
scope of this discussion).

There are a few best practices for using telephone links:

•	 It is recommended that you include the full international dialing number,
including the country code, for the tel: value because there is no way of
knowing where the user will be accessing your site.

•	 Also include the telephone number in the content of the link so that if the
link doesn’t work, the telephone number is still available.

•	 Android and iPhone have a feature that detects phone numbers and
automatically turns them into links. Unfortunately, some 10-digit num-
bers that are not telephone numbers might get turned into links, too. If
your document has strings of numbers that might get confused as phone
numbers, you can turn auto-detection off by including the following meta
element in the head of your document.

<meta name="format-detection" content="telephone=no">

For Blackberry devices, use the following:

<meta http-equiv="x-rim-auto-match" content="none">

spam-Bots
Be aware that by putting an email
address in your document source,
you will make it susceptible to
receiving unsolicited junk email
(known as spam). People who
generate spam lists sometimes use
automated search programs (called
bots) to scour the Web for email
addresses.

If you want your email to display on
the page in a way that humans can
figure it out but robots can’t, you can
deconstruct the address in a way that
is still understandable to people, for
example, “jen [-at-] oreilly [dot] com.”

That trick won’t work in a mailto link,
because the accurate email address
must be provided as an attribute
value. One solution is to encrypt the
email address using JavaScript. The
Enkoder Form at Hivelogic (hivelogic.
com/enkoder/) does this for you.
Simply enter the link text and the
email address, and Enkoder generates
code that you can copy and paste
into your document.

Otherwise, if you don’t want to risk
getting spammed, keep your email
address out of your HTML document.

http://hivelogic.com/enkoder/
http://hivelogic.com/enkoder/

Test Yourself

Chapter 6, Adding Links 121

Test Yourself
The most important lesson in this chapter is how to write URLs for links and
images. Here’s another chance to brush up on your pathname skills.

Using the directory hierarchy shown in Figure 6-12, write out the markup
for the following links and graphics. I filled in the first one for you as an
example. The answers are located in Appendix A.

This diagram should provide you with enough information to answer the
questions. If you need hands-on work to figure them out, the directory struc-
ture is available in the test directory in the materials for this chapter. The
documents are just dummy files and contain no content.

1. In index.html (the site’s home page), write the markup for a link to
tutorial.html.

 ...

2. In index.html, write the anchor element for a link to instructions.html.

3. Create a link to family.html from the page tutorial.html.

4. Create a link to numbers.html from the family.html page, but this time,
start with the root directory.

/
(somesite)

images/

index.html tutorial.html

examples/

instructions.html int

root directory (/)

examples

images germanspanishfrench

ro.html

french/

friends.html family.html

spanish/

food.html greetings.html

german/

money.html numbers.htmlcolors.html

arrow.gif bullet.gif

The ../ (or multiples of them) always
appears at the beginning of the
pathname and never in the middle. If
the pathnames you write have ../ in
the middle, you’ve done something
wrong.

T i p

Figure 6-12. The directory structure for
the Test Yourself questions.

Part II, HTML Markup for structure122

Element Review: Links

5. Create a link back to the home page (index.html) from the page
instructions.html.

6. In the file intro.html, create a link to the website for this book
(www.learningwebdesign.com/4e/materials).

7. Create a link to instructions.html from the page greetings.html.

8. Create a link back to the home page (index.html) from money.html.

We haven’t covered the image (img) element in detail yet, but you should
be able to fill in the relative URLs after the src attribute to specify the loca-
tion of the image files for these examples.

9. To place the graphic arrow.gif on the page index.html, the URL is:

10. To place the graphic arrow.gif on the page intro.html, the URL is:

11. To place the graphic bullet.gif on the friends.html page, the URL is:

Element Review: Links
There’s really only one element relevant to creating hypertext links:

Element and attributes Description

a Anchor (hypertext link) element

href="url" Location of the target file

123

A web page with all text and no pictures isn’t much fun. The Web’s explo-
sion into mass popularity was due in part to the fact that there were images
on the page. Before images, the Internet was a text-only tundra.

Images appear on web pages in two ways: embedded in the inline content
or as background images. Background images are added using Cascading
Style Sheets and are talked about at length in Chapter 13, Colors and
Backgrounds. With the emergence of standards-driven design and its mis-
sion to keep all matters of presentation out of the document structure,
there has been a shift away from using inline images for purely decorative
purposes. See the sidebar Images Move to the Background on the following
page for more information on this trend.

In this chapter, we’ll focus on embedding image content into the document
using the img element. Use the img element when the image is the content,
such as product shots, gallery images, ads, illustrations, and so on…I think
you get the idea.

First, a Word on Image Formats
We’ll get to the img element and markup examples in a moment, but first
it’s important to know that you can’t put just any image on a web page. In
order to be displayed inline, images must be in the GIF, JPEG, or PNG file
format. Chapter 21, Web Graphics Basics explains these formats and the
image types they handle best. In addition to being in an appropriate format,
image files need to be named with the proper suffixes—.gif, .jpg (or .jpeg),
and .png, respectively—in order to be recognized by the browser.

If you have a source image that is in another popular format, such as TIFF,
BMP, or EPS, you’ll need to convert it to a web format before you can add
it to the page. If, for some reason, you must keep your graphic file in its
original format (for example, a file for a CAD program or an image in a vec-
tor format), you can make it available as an external image by making a link
directly to the image file, like this:

Get the drawing

aDDIng Images

CHAPTER 7

IN THIs CHAPTER

Adding images to a web page

Using the src, alt, width, and
height attributes

Part II, HTML Markup for structure124

The img Element

Browsers use helper applications to display media they can’t handle alone.
The browser matches the suffix of the file in the link to the appropriate
helper application. The external image may open in a separate application
window or within the browser window if the helper application is a plug-in,
such as the QuickTime plug-in. The browser may also ask the user to save
the file or open an application manually. It is also possible that it won’t be
able to be opened at all.

Without further ado, let’s take a look at the img element and its required and
recommended attributes.

The img Element

Adds an inline image

The img element tells the browser, “Place an image here.” You’ve already
gotten a glimpse of it used to place banner graphics in the examples in
Chapters 4 and 5. You can also place an image element right in the flow of
the text at the point where you want the image to appear, as in the following
example. Images stay in the flow of text and do not cause any line breaks
(HTML5 calls this a phrasing element), as shown in Figure 7-1.

<p>I had been wanting to go to Tuscany
 for a long time, and I was not disappointed.</p>

Figure 7-1. By default, images are aligned with the baseline of the surrounding text, and
they do not cause a line break.

When the browser sees the img element, it makes a request to the server and
retrieves the image file before displaying it on the page. On a fast network
with a fast computer, even though a separate request is made for each image
file, the page usually appears to arrive instantaneously. On mobile devices
with slow network connections, we may be well aware of the wait for images
to be fetched one at a time. The same is true for users still using dial-up
Internet connections or other slow networks, like the expensive WiFi at
luxury hotels.

When designing mobile web experiences, it is wise to limit the number of
server requests in general, which means carefully considering the number of
images on the page.

Images Move to the
Background
Images that are used purely for
decoration have more to do with
presentation than document
structure and content. For that
reason, they should be controlled
with a style sheet rather than the
markup.

Using CSS, it is possible to place an
image in the background of the page
or in any text element (a div, h1, li…
you name it). These techniques are
introduced in Chapter 13, Colors and
Backgrounds.

There are several benefits to
specifying decorative images only in
an external style sheet and keeping
them out of the document structure.
Not only does it make the document
cleaner and more accessible, but it
also makes it easier to make changes
to the look and feel of a site than
when presentational elements are
interspersed in the content.

For inspiration on how visually rich
a web page can be with no img
elements at all, look at the examples
in the “Select a Design” section of the
CSS Zen Garden site at www
.csszengarden.com.

The img Element

Chapter 7, Adding Images 125

The src and alt attributes shown in the sample are required. The src
attribute tells the browser the location of the image file. The alt attribute
provides alternative text that displays if the image is not available. We’ll talk
about src and alt a little more in upcoming sections.

There are a few other things of note about the img element:

•	 It is an empty element, which means it doesn’t have any content. You
just place it in the flow of text where the image should go.

•	 If you choose to write in the stricter XHTML syntax, you need to termi-
nate (close) the empty img element with a slash like so: .

•	 It is an inline element, so it behaves like any other inline element in the
text flow. Figure 7-2 demonstrates the inline nature of image elements.
When the browser window is resized, the line of images reflows to fill
the new width.

•	 The img element is what’s known as a replaced element because it is
replaced by an external file when the page is displayed. This makes it dif-
ferent from text elements that have their content right there in the source
(and thus are non-replaced).

•	 By default, the bottom edge of an image aligns with the baseline of text,
as shown in Figures 7-1 and 7-2. Using CSS, you can float the image to
the right or left margin and allow text to flow around it, control the space
and borders around the image, and change its vertical alignment. We’ll
talk about those styles in Part III.

Figure 7-2. Inline images are part of the normal document flow. They reflow when the browser window is resized.

Providing the location with src
src="URL"
Source (location) of the image

The value of the src attribute is the URL of the image file. In most cases,
the images you use on your pages will reside on your server, so you will use

The src and alt attributes
are required in the img
element.

Part II, HTML Markup for structure126

The img Element

relative URLs to point to them. If you just read Chapter 6, Adding Links, you
should be pretty handy with writing relative URLs by now. In short, if the
image is in the same directory as the HTML document, you can just refer to
the image by name in the src attribute:

Developers usually organize the images for a site into a directory called
images, assets, or graphics. There may even be separate image directories for
each section of the site. If an image is not in the same directory as the docu-
ment, you need to provide the pathname to the image file.

Of course, you can place images from other websites as well (just be sure
that you have permission to do so). Just use an absolute URL, like this:

Providing alternate text with alt
alt="text"
Alternative text

Every img element must also contain an alt attribute that is used to provide
a brief description of the image for those who are not able to see it, such as
users with screen readers, braille, or even small mobile devices. Alternate
text (also referred to as alt text) should serve as a substitute for the image
content—serving the same purpose and presenting the same information.

<p>If you're and you know it clap
your hands.</p>

A screen reader might indicate the image by reading its alt value this way:

“If you’re image happy and you know it clap your hands.”

If an image does not add anything meaningful to the text content of the
page, it is recommended that you leave the value of the alt attribute empty,
as shown in the following example and other examples in this chapter (you
may also consider whether it is more appropriately handled as a background
image with CSS, but I digress). Note that there is no character space between
the quotation marks.

Do not omit the alt attribute altogether, however, because it will cause the
document to be invalid (validating documents is covered in Chapter 3, Some
Big Concepts You Need to Know). For each inline image on your page, con-
sider what the alternative text would sound like when read aloud and wheth-
er that enhances or is just obtrusive to a screen-reader user’s experience.

Alternative text may benefit users with graphical browsers as well. If a user
has opted to turn images off in the browser preferences or if the image sim-
ply fails to load, the browser may display the alternative text to give the user

Take Advantage of
Caching
Here’s a tip for making images display
more quickly and reducing the traffic
to your server. If you use the same
image in multiple places on your site,
be sure each img element is pointing
to the same image file on the server.

When a browser downloads an image
file, it stores it in the disk cache (a
space for temporarily storing files on
the hard disk). That way, if it needs to
redisplay the page, it can just pull up
a local copy of the source document
and image files without making a new
trip out to the remote server.

When you use the same image
repetitively in a page or a site, the
browser only needs to download
the image once. Every subsequent
instance of the image is grabbed from
the local cache, which means less
traffic for the server and faster display
for the end user.

The browser recognizes an image
by its entire pathname, not just
the filename, so if you want to take
advantage of file caching, be sure
that each instance of your image
is pointing to the same image file
on the server, not multiple copies
of the same image file in different
directories.

T i p

The img Element

Chapter 7, Adding Images 127

an idea of what is missing. The handling of alternative text is inconsistent
among modern browsers, however, as shown in Figure 7-3.

With image displayed

Firefox (Windows and Mac) Internet Explorer (Windows)

Chrome (Mac & Windows) Safari (Mac)

Figure 7-3. Most browsers display alternative text in place of the image (either with an
icon or as inline text) if the image is not available. Safari for Macintosh OS X is a notable
exception.

Image Accessibility
Images and other non-text content are a challenge for users accessing the Web with
screen readers. Alternative text allows you to provide a short description of what is in
an image for those who can’t see it. However, there are some types of images, such
as data charts and diagrams, that require longer descriptions than are practical as an
alt value.

For extremely long descriptions, consider writing the description elsewhere on the
page or in a separate document and making a reference or link to it near the image.

HTML 4.01 included the longdesc (long description) attribute, but it was dropped
in HTML5 due to lack of support. The longdesc attribute points to a separate HTML
document containing a lengthy description of the image, as in this example:

<img src="executivesalaries.png" alt="Executive salaries 1999-2009"
longdesc="salaries-ld.html">

In HTML5, the figcaption element allows a long description of an image when it is
placed in a figure.

There is more to say about image accessibility than I can fit in this chapter. I
encourage you to start your research with these resources:

 y “Creating Accessible Images” at WebAIM (webaim.org/techniques/images/
longdesc) provides alternatives to the longdesc attribute.

 y “Chapter 6, The Image Problem” from the book Building Accessible Websites by Joe
Clark (joeclark.org/book/sashay/serialization/Chapter06.html)

 y The Web Content Accessibility Guidelines (WCAG 2.0) at the W3C include
techniques for improving accessibility across all web content (www.w3.org/TR/
WCAG20-TECHS/). Warning: it’s pretty dense.

n oT e

Serving different image files for an img
element based on device size is handled
by JavaScript or a program running on
the server. It is beyond the scope of this
chapter, but see the Responsive Images
sidebar in Chapter 18, CSS Techniques.

http://www.w3.org/TR/WCAG20-TECHS/
http://www.w3.org/TR/WCAG20-TECHS/

Part II, HTML Markup for structure128

The img Element

Providing width and height dimensions
width="number"
Image width in pixels

height="number"
Image height in pixels

The width and height attributes indicate the dimensions of the image in
number of pixels. Sounds mundane, but these attributes can speed up the
time it takes to display the final page by seconds. Browsers use the specified
dimensions to hold the right amount of space in the layout while the images
are loading rather than reconstructing the page each time a new image
arrives.

And that’s great if you are designing one version of your page with one fixed
image size. However, in these days of responsive web design, it is common
to create several versions of the same image and send a small one to small
mobile devices and a larger image for large-screen devices (and rescale the
images to fit for sizes in between). If you are scaling images in a responsive
design or delivering multiple image sizes, do not use width and height attri-
butes in the markup.

With this caveat in mind, let’s look at how width and height work for those
cases when it is appropriate to use them.

Match values with actual pixel size
Be sure that the pixel dimensions you specify are the actual dimensions of
the image. If the pixel values differ from the actual dimensions of your image,
the browser resizes the image to match the specified values (Figure 7-4).

Although it may be tempting to resize images in
this manner, you should avoid doing so. Even
though the image may appear small on the page,
the large image with its corresponding large
file size still needs to download. It is better to
resize the image in an image-editing program
and then place it at actual size on the page. Not
only that, but resizing with attributes usually
results in a blurry and deformed image. In fact,
if your images ever look fuzzy when viewed in a
browser, the first thing to check is that the width
and height values match the dimensions of the
image exactly.

Using a Browser
to Find Pixel
Dimensions
You can find the pixel dimensions of
an image by opening it in an image
editing program, of course, but did
you know you can also use a web
browser?

Using Chrome, Firefox, or Safari (but,
sorry, not Internet Explorer), simply
open the image file, and its pixel
dimensions display in the browser’s
title bar along with the filename. It’s
a handy shortcut I use all the time
because I always seem to have a
browser running.

T i p

width="144" height="72"

width="72" height="72"
(actual size of image)

width="144" height="144"

.

Figure 7-4. Browsers resize images to
match the provided width and height
values. It is strongly recommended not to
resize images in this way

The img Element

Chapter 7, Adding Images 129

exercise 7-1 | Adding and linking images
You’re back from Italy and it’s time to post about some of your
travels. In this exercise, you’ll add thumbnail images to a travelog
and make them link to pages with full-sized versions.

All the thumbnails and photos you need have been created for
you, and I’ve given you a head start on the HTML files as well.
Everything is available at www.learningwebdesign.com/4e/
materials. Put a copy of the tuscany folder on your hard drive,
making sure to keep it organized as you find it. As always, the
resulting markup is listed in Appendix A.

This little site is made up of a main page (index.html) and three
separate HTML documents containing each of the larger image
views (Figure 7-5). First, we’ll add the thumbnails, and then we’ll
add the full-size versions to their respective pages. Finally, we’ll
make the thumbnails link to those pages. Let’s get started. Open
the file index.html, and add the small thumbnail images to this
page to accompany the text. I’ve done the first one for you:

<h2>Pozzarello</h2>

<p><img src="thumbnails/window_thumb.jpg"
alt="view from bedroom window" width="75"
height="100"> The house we stayed in was called
Pozzarello…

I’ve put the image at the beginning of the paragraph, just
after the opening <p> tag. Because all of the thumbnail
images are located in the thumbnails directory, I provided
the pathname in the URL. I also added a description of the
image and the width and height dimensions in pixels (px).

Now it’s your turn. Add the image countryside_thumb
.jpg (100px wide x 75px tall) and sienna_thumb.jpg (75 x
100) at the beginning of the paragraphs in their respective
sections. Be sure to include the pathname, an alternative
text description, and pixel dimensions.

When you are done, save the file and then open it in the
browser to be sure that the images are visible and appear
at the right size.

Figure 7-5. Travel photo site.

http://www.learningwebdesign.com/

Part II, HTML Markup for structure130

A Window in a Window

1. Next, add the images to the individual HTML documents. I’ve
done window.html for you:

<h1>The View Through My Window</h1>
<p><img src="photos/window.jpg" alt="view out the
window of the rolling Tuscan hills" width="375"
height="500"></p>

Notice that the full-size images are in a directory called
photos, so that needs to be reflected in the pathnames.

Add images to countryside.html and sienna.html, following
my example. Hint: all of the images are 500 pixels on their
widest side and 375 pixels on their shortest side, although
the orientation varies.

Save each file, and check your work by opening them in
the browser window.

2. Back in index.html, link the thumbnails to their respective
files. I’ve done the first one here.

<h2>Pozzarello</h2>
<p><img src="thumbnails/
window_thumb.jpg" alt="view from the bedroom
window" width="75" height="100"></p>

Notice that the URL is relative to the current document
(index.html), not to the location of the image (the
thumbnails directory).

Make the remaining thumbnail images links to each of the
documents. If all the images are visible and you are able to
link to each page and back to the home page again, then
congratulations, you’re done!

Like a little more practice?
If you’d like more practice, you’ll find three additional images
(sweets.jpg, cathedral.jpg, and lavender.jpg) with their thumbnail
versions (sweets_thumb.jpg, cathedral_thumb.jpg, and
lavender_thumb.jpg) in their appropriate directories. This time,
you’ll need to add your own descriptions to the home page
and create the HTML documents for the full-size images from
scratch.

For an added challenge, create a new directory called
photopages in the tuscany directory. Move countryside.html and
sienna.html into that directory, and then update the URLs on
those pages so that the images are visible again.

A Window in a Window
As long as we’re talking about embedding things on a page, I thought I’d tell
you about the iframe element that lets you to embed a separate HTML docu-

ment or other resource in a docu-
ment. What you see on the page is
a floating or inline “frame” that dis-
plays the document with its own set
of scrollbars if the embedded docu-
ment is too long to fit (Figure 7-6).

You place an inline frame on a page
similarly to an image, specifying the
source (src) of its content as well as
its width and height. The content
in the iframe element itself displays
on browsers that don’t support the
element. This example displays
a document called list.html in an
inline frame.

Figure 7-6. Inline frames (added with the
iframe element) are like a browser window
within the browser that displays external
HTML documents and resources.

Test Yourself

Chapter 7, Adding Images 131

<h1>Inline (floating) Frames</h1>

<iframe src="list.html" width="400" height="250">

Your browser does not support inline frames.Read the <a href="list.
html">list.

</iframe>

You don’t see inline frames much in the wild, but developers sometimes use
them to keep third party content such as interactive ads or other widgets
quarantined so they don’t interfere with the scripting and contents of the
rest of the page.

Test Yourself
Images are a big part of the web experience. Answer these questions to see
how well you’ve absorbed the key concepts of this chapter. The correct
answers can be found in Appendix A.

1. Which attributes must be included in every img element?

2. Write the markup for adding an image called furry.jpg that is in the
same directory as the current document.

3. Why is it necessary to include alternative text? Name two reasons.

4. What is the advantage of including width and height attributes for
every graphic on the page? When should you leave them out?

5. What might be going wrong if your images don’t appear when you
view the page in a browser? There are three possible explanations.

Part II, HTML Markup for structure132

Element Review: Images

Element Review: Images
We covered just one element in this chapter:

Element and attributes Description

img Inserts an inline image.

src="url" The location of the image file.

alt="text" Alternative text.

width="number" Width of the graphic.

height="number" Height of the graphic.

usemap="usemap" Indicates a client-side image map.

title="text" Provides a "tool tip" when the user mouses over the
image. Can be used for supplemental information
about the image.

iframe Inserts an inline browsing context (window)

height="number" Height of the frame in pixels

src="url" Resource of the display in the frame

width="number" Width of the frame in pixels

133

Before we launch into the markup for tables, let’s check in with our progress
so far. We’ve covered a lot of territory: how to establish the basic structure of
an HTML document, how to mark up text to give it meaning and structure,
how to make links, and how to embed images on the page.

This chapter and the next, Chapter 9, Forms, describe the markup for spe-
cialized content that you might not have a need for right away. If you’re
getting antsy to make your pages look good, skip right to Part III and start
playing with Cascading Style Sheets. The tables and forms chapters will be
here when you’re ready for them.

Are you still with me? Great. Let’s talk tables. We’ll start out by reviewing
how tables should be used, then learn the elements used to create them with
markup. Remember, this is an HTML chapter, so we’re going to focus on the
markup that structures the content into tables, and we won’t be concerned
with how the tables look. Like any web content, the appearance (or presen-
tation, as we say in the web dev biz) of tables should be handled with style
sheets, which you’ll learn about in Chapter 18, CSS Techniques.

How Tables Are Used
HTML tables were created for instances when you need to add tabular
material (data arranged into rows and columns) to a web page. Tables may
be used to organize calendars, schedules, statistics, or other types of infor-
mation, as shown in Figure 8-1. Note that “data” doesn’t necessarily mean
numbers. A table cell may contain any sort of information, including num-
bers, text elements, and even images and multimedia objects.

table markuP

CHAPTER 8

IN THIs CHAPTER

How tables are used

Basic table structure

The importance of headers

Spanning rows and columns

Cell padding and spacing

Making tables accessible

Part III, Css for Presentation134

How Tables Are Used

w3c.org

wikipedia.org

mbta.org

Figure 8-1. Examples of tables used for tabular information, such as charts, calendars,
and schedules.

In visual browsers, the arrangement of data in rows and columns gives read-
ers an instant understanding of the relationships between data cells and their
respective header labels. Bear in mind when you are creating tables, how-
ever, that some readers will be hearing your data read aloud with a screen
reader or reading braille output. Later in this chapter, we’ll discuss measures
you can take to make table content accessible to users who don’t have the
benefit of visual presentation.

In the days before style sheets, tables were the only option for creating mul-
ticolumn layouts or controlling alignment and whitespace. Layout tables,
particularly the complex nested table arrangements that were once standard
web design fare, have gone the way of the dodo. This chapter focuses on
HTML tables as they are intended to be used.

The Trouble with
Tables
Large tables, such as those shown in
Figure 8-1, can be difficult to use on
small-screen devices. By default, they
are shrunk to fit the screen width,
rendering the text in the cells too
small to be read. Users can zoom in
to read the cells, but then only a few
cells may be visible at a time and it is
difficult to parse the organization of
headings and columns.

To be honest, as of this writing, we
are just starting to figure out how
best to handle tabular material on
small screens. One approach is to
replace the table with a graphic
representation, such as a pie chart,
on mobile devices. Of course, this
will work only for certain types of
tables. For simple two- or three-
column tables, consider using a dl
list to represent the information
instead for more flexibility. Another
approach is to put an indication of
the table (such as an image of the
top of it) that links to a separate
screen with the full table for those
who are interested. Chris Coyier
proposes a clever solution in his
article “Responsive Data Tables”
(css-tricks.com/9096-responsive-
data-tables/) that describes how to
use CSS to reformat the table as a
long, narrow list that fits better in
a smartphone screen. See also the
clever solution proposed by Filament
Group (think of them as the Super
Friends of responsive design) at
filamentgroup.com/lab/responsive_
design_approach_for_complex_
multicolumn_data_tables/.

There may be new solutions by the
time you read this, but it is important
to always keep the mobile, small-
screen experience in mind as you
design any web content.

Minimal Table structure

Chapter 8, Table Markup 135

Minimal Table structure
Let’s take a look at a simple table to see what it’s made of. Here is a small
table with three rows and three columns that lists nutritional information.

Menu item Calories Fat (g)

Chicken noodle soup 120 2

Caesar salad 400 26

Figure 8-2 reveals the structure of this table according to the HTML table
model. All of the table’s content goes into cells that are arranged into rows.
Cells contain either header information (titles for the columns, such as
“Calories”) or data, which may be any sort of content.

header cell
Menu item

data cell
Chicken Noodle Soup

data cell
Caesar Salad

header cell
Calories

data cell
120

data cell
400

header cell
Fat (g)

data cell
2

data cell
26

row

row

row

table

Figure 8-2. Tables are made up of rows that contain cells. Cells are the containers for
content.

Simple enough, right? Now let’s look at how those parts translate into ele-
ments (Figure 8-3).

<th>Menu item</th>

<td>Chicken Noodle
Soup</td>

<td>Caesar Salad</td>

<th>Calories</th>

<td>120</td>

<td>400</td>

<th>Fat (g)</th>

<td>2</td>

<td>26</td>

<tr>

<tr>

<tr>

<table>

</table>

</tr>

</tr>

</tr>

Figure 8-3. The elements that make up the basic structure of a table.

Figure 8-3 shows the elements that identify the table (table), rows (tr, for
“table row”), and cells (th, for “table headers,” and td, for “table data”).
Cells are the heart of the table, because that’s where the actual content goes.
The other elements just hold things together.

<table>...</table>
Tabular content (rows and columns)

<tr>...</tr>
Table row

<th>...</th>
Table header

<td>...</td>
Table cell data

Part III, Css for Presentation136

Minimal Table structure

What we don’t see are column elements (see note). The number of columns
in a table is determined by the number of cells in each row. This is one of
the things that make HTML tables potentially tricky. Rows are easy—if you
want the table to have three rows, just use three tr elements. Columns are
different. For a table with four columns, you need to make sure that every
row has four td or th elements; the columns are implied.

Written out in a source document, the markup for the table in Figure 8-3
would look like the following sample. It is common to stack the th and td
elements in order to make them easier to find in the source. This does not
affect how they are rendered by the browser.

<table>
 <tr>
 <th>Menu item</th>
 <th>Calories</th>
 <th>Fat (g)</th>
 </tr>
 <tr>
 <td>Chicken noodle soup</td>
 <td>120</td>
 <td>2</td>
 </tr>
 <tr>
 <td>Caesar salad</td>
 <td>400</td>
 <td>26</td>
 </tr>
</table>

Remember, all the content must go in cells, that is, within td or th elements.
You can put any content in a cell: text, a graphic, even another table.

Start and end table tags are used to identify the beginning and end of the
tabular material. The table element may directly contain only some number
of tr (row) elements. The only thing that can go in the tr element is some
number of td or th elements. In other words, there may be no text content
within the table and tr elements that isn’t contained within a td or th.

Finally, Figure 8-4 shows how the table would look in a simple web page, as
displayed by default in a browser. I know it’s not exciting. Excitement hap-
pens in the CSS chapters. What is worth noting is that tables always start on
new lines by default in browsers.

n oT e

There are two column-related elements
in HTML5: col for identifying a column
and colgroup for establishing related
groups of columns. They were created
to add a layer of information about
the table that can potentially speed
up its display, but they are not part of
HTML’s row-centric table model. See
the sidebar Advanced Table Elements
for more information.

Minimal Table structure

Chapter 8, Table Markup 137

Advanced Table Elements
The sample table in this section has been stripped down to its
bare essentials to make its structure clear while you learn how
tables work. It is worth noting, however, that there are other
table elements and attributes that offer more complex semantic
descriptions and improve the accessibility of tabular content. A
thoroughly marked-up version of the sample table might look
like this:

<table>
<caption>Nutritional Information (Calorie and Fat

Content)</caption>

<col span="1" class="itemname">
<colgroup id="data">
 <col span="1" class="calories">
 <col span="1" class="fat">
</colgroup>

<thead>
 <tr>
 <th scope="col">Menu item</th>
 <th scope="col">Calories</th>
 <th scope="column">Fat (g)</th>
 </tr>
</thead>

<tbody>
 <tr>
 <td>Chicken noodle soup</td>
 <td>120</td>
 <td>2</td>
 </tr>
 <tr>
 <td>Caesar salad</td>
 <td>400</td>
 <td>26</td>
 </tr>
</tbody>

</table>

Row group elements
You can describe rows or groups of rows as belonging to a
header, footer, or the body of a table using the thead, tfoot, and
tbody elements, respectively. Some user agents (another word
for a browsing device) may repeat the header and footer rows
on tables that span multiple pages. Authors may also use these
elements to apply styles to various regions of a table.

Column group elements
Columns may be identified with the col element or put into
groups using the colgroup element. This is useful for adding
semantic context to information in columns and may be used
to calculate the width of tables more quickly. Notice that there
is no content in the column elements; it just describes the
columns before the actual table data begins.

Accessibility features
Accessibility features such as captions for providing descriptions
of table content and the scope and headers attributes for
explicitly connecting headers with their respective content are
discussed later in this chapter.

An in-depth exploration of the advanced table elements
are beyond the scope of this book, but you may want
to do more research at the W3C site (www.w3.org/TR/
html5) if you anticipate working with data-heavy tables.

n oT e

According to the HTML5 spec, a table may contain “in
this order: optionally a caption element, followed by zero
or more colgroup elements, followed optionally by a thead
element, followed optionally by a tfoot element, followed
by either zero or more tbody elements or one or more tr
elements, followed optionally by a tfoot element (but
there can only be one tfoot element child in total).” Got
all that?

Part III, Css for Presentation138

Minimal Table structure

Figure 8-4. The default rendering of our sample table in a browser.

Here is the source for another table. Can you tell how many rows and col-
umns it will have when it is displayed in a browser?

<table>
 <tr>
 <td>Sufjan Stevens</td>
 <td>Illinoise</td>
 <td>Asthmatic Kitty Records</td>
 </tr>
 <tr>
 <td>The Shins</td>
 <td>Oh Inverted World</td>
 <td>Sub-pop Records</td>
 </tr>
</table>

If you guessed that it’s a table with two rows and three columns, you’re cor-
rect! Two tr elements create two rows; three td elements in each row create
three columns.

Table Headers
As you can see in Figure 8-4, the text marked up as headers (th elements)
is displayed differently from the other cells in the table (td elements). The
difference, however, is not purely cosmetic. Table headers are important
because they provide information or context about the cells in the row or
column they precede. The th element may be handled differently than tds
by alternative browsing devices. For example, screen readers may read the
header aloud before each data cell (“Menu item, Caesar salad, Calories, 400,
Fat-g, 26”).

stylin’ Tables
Once you build the structure of the
table in the markup, it’s no problem
adding a layer of style to customize its
appearance.

Style sheets can and should be used
to control these aspects of a table’s
visual presentation. We’ll get to all the
formatting tools you’ll need in the
following chapters:

In Chapter 12, Formatting Text:

 y Font settings for cell contents

 y Text color in cells

In Chapter 14, Thinking Inside the
Box:

 y Table dimensions (width and
height)

 y Borders

 y Cell padding (space around cell
contents)

 y Margins around the table

In Chapter 13, Colors and
Backgrounds:

 y background colors

 y Tiling background images

In Chapter 18, CSS Techniques:

 y Special properties for controlling
borders and spacing between
cells

spanning Cells

Chapter 8, Table Markup 139

In this way, they are a key tool for making table content accessible. Don’t try
to fake headers by formatting a row of td elements differently than the rest of
the table. Conversely, don’t avoid using th elements because of their default
rendering (bold and centered). Mark up the headers semantically and change
the presentation later with a style rule.

That covers the basics. Before we get fancier, try your hand at Exercise 8-1.

exercise 8-1 | Making a simple table
Try writing the markup for the table shown in Figure 8-5. You can open a text editor
or just write it down on paper. The finished markup is provided in Appendix A.

(Note that I’ve added a 1-pixel border around cells with a style rule just to make the
structure clear. You won’t include this in your version.)

Be sure to close all table elements. Technically, you are not required to close tr, th,
and td elements, but I want you to get in the habit of writing tidy source code
for maximum predictability across all browsing devices. If you choose to write
documents using XHTML syntax, closing table elements is required in order for the
document to be valid.

Figure 8-5. Write the markup for this table.

spanning Cells
One fundamental feature of table structure is cell spanning, which is the
stretching of a cell to cover several rows or columns. Spanning cells allows
you to create complex table structures, but it has the side effect of making
the markup a little more difficult to keep track of. You make a header or data
cell span by adding the colspan or rowspan attributes, as we’ll discuss next.

Part III, Css for Presentation140

spanning Cells

Column spans
Column spans, created with the colspan attribute in the td or th element,
stretch a cell to the right to span over the subsequent columns (Figure 8-6).
Here a column span is used to make a header apply to two columns. (I’ve
added a border around cells to reveal the table structure in the screenshot.)

<table>
 <tr>
 <th colspan="2">Fat</th>
 </tr>
 <tr>
 <td>Saturated Fat (g)</td>
 <td>Unsaturated Fat (g)</td>
 </tr>
</table>

Figure 8-6. The colspan attribute stretches a cell to the right to span the specified
number of columns.

Notice in the first row (tr) that there is only one th element, while the sec-
ond row has two td elements. The th for the column that was spanned over
is no longer in the source; the cell with the colspan stands in for it. Every
row should have the same number of cells or equivalent colspan values. For
example, there are two td elements and the colspan value is 2, so the implied
number of columns in each row is equal.

wa R n i n G

Be careful with colspan values. If you
specify a number that exceeds the num-
ber of columns in the table, most brows-
ers will add columns to the existing
table, which typically screws things up.

exercise 8-2 | Column spans
Try writing the markup for the table shown in Figure 8-7. You can open a text editor or just
write it down on paper. I added borders to reveal the cell structure in the figure, but your
table won’t have them. Check Appendix A for the final markup.

Figure 8-7. Practice column spans by writing the mvwarkup for this table.

Some hints:

 y For simplicity's sake, this table uses all
td elements.

 y The second row shows you that the
table has a total of three columns.

 y When a cell is spanned over, its td
element does not appear in the table.

spanning Cells

Chapter 8, Table Markup 141

Row spans
Row spans, created with the rowspan attribute, work just like column spans,
but they cause the cell to span downward over several rows. In this example,
the first cell in the table spans down three rows (Figure 8-8).

<table>
 <tr>
 <th rowspan="3">Serving Size</th>
 <td>Small (8oz.)</td>
 </tr>
 <tr>
 <td>Medium (16oz.)</td>
 </tr>
 <tr>
 <td>Large (24oz.)</td>
 </tr>
</table>

Again, notice that the td elements for the cells that were spanned over (the
first cells in the remaining rows) do not appear in the source. The rowspan="3"
implies cells for the subsequent two rows, so no td elements are needed.

Figure 8-8. The rowspan attribute stretches a cell downward to span the specified number
of rows.

exercise 8-3 | Row spans
Try writing the markup for the table shown in Figure 8-9. Remember that cells that are
spanned over do not appear in the table code. Rows always span downward, so the
“oranges” cell is part of the first row even though its content is vertically centered.

If you’re working in text editor, don’t worry if your table doesn’t look exactly like the one
shown here. The resulting markup is provided in Appendix A.

Figure 8-9. Practice row spans by writing the markup for this table.

Some hints:

 y Rows always span downward, so the
"oranges" cell is part of the first row

 y Cells that are spanned over do not
appear in the code

Part III, Css for Presentation142

Table Accessibility

space In and Between Cells
By default, cells are sized just large enough to fit their contents, but often you’ll want
to add a little breathing room around tabular content (Figure 8-10). Because spacing
is a matter of presentation, it is a job for style sheets.

Cell padding is the space inside the cell, between the content and the edge of the
cell. To add cell padding, apply the CSS padding property to the td or th element.

Cell spacing, the area between cells, is a little more complicated. First, set the border-
collapse property for the table to separate, then use the border-spacing property
to specify the amount of space between borders. Unfortunately, this technique won’t
work in Internet Explorer 6, but hopefully IE6 usage will be inconsequential by the
time you’re reading this.

In the past, cell padding and spacing were handled by the cellpadding and
cellspacing attributes in the table element, respectively, but they have been made
obsolete in HTML5 due to their presentational nature.

By default, table cells expand just
enough to �t the contents.

Cell padding is the space between the
edge of the cell and its contents. Cell spacing is the space between cells.

Figure 8-10. Cell padding and cell spacing.

Table Accessibility
As a web designer, it is important that you always keep in mind how your
site’s content is going to be used by non-sighted visitors. It is especially chal-
lenging to make sense of tabular material using a screen reader, but there are
measures you can take to improve the experience and make your content
more understandable.

Table Accessibility

Chapter 8, Table Markup 143

Describing table content
The first step is to simply provide a description of your table’s contents and
perhaps the way it is structured if it is out of the ordinary.

Use the caption element to give a table a title or brief description that dis-
plays next to the table. You can use it to describe the table’s contents or
provide hints on how it is structured. When used, the caption element must
be the first thing within the table element, as shown in this example that
adds a caption to the nutritional chart from earlier in the chapter.

<table>
 <caption>Nutritional Information (Calorie and Fat Content)</caption>
 <tr>
 <th>Menu item</th>
 <th>Calories</th>
 <th>Fat (g)</th>
 </tr>

 …table continues…
</table>

The caption is displayed above the table by default, as shown in Figure 8-11,
although you can use a style sheet property (caption-side) to move it below
the table.

Figure 8-11. The table caption is displayed above the table by default.

For longer descriptions, you could consider putting the table in a figure
element and using the figcaption element for the description. The HTML5
specification has a number of suggestions for providing table descriptions,
which you can find at www.w3.org/TR/html5/tabular-data.html#table-
descriptions-techniques.

Connecting cells and headers
We discussed headers briefly as a straightforward method for improving
the accessibility of table content, but sometimes it may be difficult to know
which header applies to which cells. For example, headers may be at the left
or right edge of a row rather than at the top of a column. And although it
may be easy for sighted users to understand a table structure at a glance, for
users hearing the data as text, the overall organization is not as clear. HTML
4.01 introduced a few attributes that allow authors to explicitly associate
headers and their respective content.

n oT e

HTML 4.01 included a summary attribute
for the table element that was used for
providing long descriptions to assistive
devices while hiding them from visu-
al browsers. However, it was omitted
from HTML5 and will trigger validation
errors.

Part III, Css for Presentation144

Wrapping Up Tables

scope

The scope attribute associates a table header with the row, column,
group of rows (such as tbody), or column group in which it appears
using the values row, column, rowgroup, or colgroup, respectively. This
example uses the scope attribute to declare that a header cell applies to
the current row.

<tr>
 <th scope="row">Mars</th>
 <td>.95</td>
 <td>.62</td>
 <td>0</td>
</tr>

headers

For really complicated tables in which scope is not sufficient to associ-
ate a table data cell with its respective header (such as when the table
contains multiple spanned cells), the headers attribute is used in the td
element to explicitly tie it to a header’s id value. In this example, the cell
content “.38” is tied to the header “Diameter measured in earths”:

<th id="diameter">Diameter measured in earths</th>

…many other cells…
<td headers="diameter">.38</td>
…many other cells…

This section is obviously only the tip of the iceberg of table accessibility.
In-depth instruction on authoring accessible tables is beyond the scope of
this beginner book. If you’d like to learn more, I recommend “Creating
Accessible Tables” at WebAIM (www.webaim.org/techniques/tables) as an
excellent starting point.

Wrapping Up Tables
This chapter gave you a good overview of the components of HTML tables.
Exercise 8-4 puts most of what we covered together to give you a little more
practice at authoring tables.

After just a few exercises, you’re probably getting the sense that writing table
markup manually, although not impossible, gets tedious and complicated
quickly. Fortunately, web-authoring tools such as Dreamweaver provide
interfaces that make the process much easier and time-efficient. Still, you’ll
be glad that you have a solid understanding of table structure and terminol-
ogy, as well as the preferred methods for changing a table’s appearance.

Wrapping Up Tables

Chapter 8, Table Markup 145

exercise 8-4 | The table challenge
Now it’s time to put together the table writing skills you’ve
acquired in this chapter. Your challenge is to write out the source
document for the table shown in Figure 8-12.

I’ll walk you through it one step at a time.

1. First, open a new document in your text editor and set up its
overall structure (html, head, title, and body elements). Save
the document as table.html in the directory of your choice.

2. Next, in order to make the boundaries of the cells and table
clearer when you check your work, I’m going to have you
add some simple style sheet rules to the document. Don’t
worry about understanding exactly what’s happening here
(although it’s fairly intuitive); just insert this style element in
the head of the document exactly as you see it here.

<head>
 <title>Table Challenge</title>
 <style type="text/css">
 td, th { border: 1px solid #CCC; }
 table {border: 1px solid black; }
 </style>
</head>

3. Now it’s time to start building the table. I usually start
by setting up the table and adding as many empty row
elements as I’ll need for the final table as placeholders, as
shown here (it should be clear that there are five rows in this
table).

<body>
<table>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
 <tr></tr>
</table>
</body>

4. Start with the top row, and fill in the th and td elements from
left to right, including any row or column spans as necessary.
I’ll help with the first row.

The first cell (the one in the top left corner) spans down the
height of two rows, so it gets a rowspan attribute. I’ll use a th
here to keep it consistent with the rest of the row. This cell has
no content.

<table>
 <tr>
 <th rowspan="2"></th>
 </tr>

The cell in the second column of the first row spans over the
width of two columns, so it gets a colspan attribute:

<table>
 <tr>
 <th rowspan="2"></th>
 <th colspan="2">A common header for two

subheads</th>
 </tr>

The cell in the third column has been spanned over by the
colspan we just added, so we don’t need to include it in the
markup. The cell in the fourth column also spans down two
rows.

<table>
 <tr>
 <th rowspan="2"></th>
 <th colspan="2">A common header for two

subheads</th>
 <th rowspan="2">Header 3</th>
 </tr>

5. Now it’s your turn. Continue filling in the th and td elements
for the remaining four rows of the table. Here’s a hint: the first
and last cells in the second row have been spanned over.
Also, if it’s bold in the example, make it a header.

6. To complete the content, add the title over the table using
the caption element.

7. Finally, use the scope attribute to make sure that the Thing
A, Thing B, and Thing C headers are associated with their
respective rows.

8. Save your work and open the file in a browser. The table
should look just like the one on this page. If not, go back and
adjust your markup. If you’re stumped, the final markup for
this exercise is listed in Appendix A.

Figure 8-12. The table challenge.

Part III, Css for Presentation146

Test Yourself

Element Review: Tables
The following is a summary of the elements we covered in this chapter:

Element and attributes Description

table Establishes a table element

td Establishes a cell within a table row

colspan="number" Number of columns the cell should span

rowspan="number" Number of rows the cell should span

headers="header name" Associates the data cell with a header

th Table header associated with a row or column

colspan="number" Number of columns the cell should span

rowspan="number" Number of rows the cell should span

headers="header name" Associates a header with another header

scope="row|col|
rowgroup|colgroup"

Associates the header with a row, row group,
column, or column group

tr Establishes a row within a table

caption Gives the table a title that displays in the browser

col Declares a column

colgroup Declares a group of columns

tbody Identifies the table body row group

tfoot Identifies the table footer grow group

thead Identifies the table header row group

Test Yourself
The answers to these questions are
in Appendix A.

1. What are the parts (elements) of
a basic HTML table?

2. Why don’t professional web
designers use tables for layout
anymore?

3. When would you use the col
(column) element?

4. Find five errors in this table
markup.

<caption>Primetime Television
1965</caption>

<table>
 Thursday Night
 <tr></tr>
 <th>7:30</th>
 <th>8:00</th>
 <th>8:30</th>
 <tr>
 <td>Shindig</td>
 <td>Donna Reed Show</td>
 <td>Bewitched</td>
 <tr>
 <colspan>Laredo</colspan>
 <td>Daniel Boone</td>
 </tr>
</table>

147

It didn’t take long for the web to shift from a network of pages to read to a
place where you went to get things done—making purchases, booking plane
tickets, signing petitions, searching a site, posting a tweet…the list goes on!
All of these interactions are handled by forms.

In fact, in response to this shift from page to application, HTML5 intro-
duced a bonanza of new form controls and attributes that make it easier for
users to fill out forms and for developers to create them. Tasks that have
traditionally relied on JavaScript may be handled by markup and native
browser behavior alone. HTML5 introduces a number of new form-related
elements, 13 new input types, and many new attributes (they are listed in
Table 9-1 at the end of this chapter). Some of these features are waiting for
browser implementation to catch up, so I will be sure to note which controls
may not be universally supported.

This chapter introduces web forms, how they work, and the markup used
to create them. I’ll also briefly discuss the importance of web form design.

How Forms Work
There are two parts to a working form. The first part is the form that you see
on the page itself that is created using HTML markup. Forms are made up
of buttons, input fields, and drop-down menus (collectively known as form
controls) used to collect information from the user. Forms may also contain
text and other elements.

The other component of a web form is an application or script on the server
that processes the information collected by the form and returns an appro-
priate response. It’s what makes the form work. In other words, posting an
HTML document with form elements isn’t enough. Web applications and
scripts require programming know-how that is beyond the scope of this
book, but the Getting Your Forms to Work sidebar later in this chapter pro-
vides some options for getting the scripts you need.

forms

CHAPTER 9

IN THIs CHAPTER

How forms work

The form element

POST versus GET

Variables and values

Form controls

Form accessibility features

Part II, HTML Markup for structure148

How Forms Work

From data entry to response
If you are going to be creating web forms, it is beneficial to understand what
is happening behind the scenes. This example traces the steps of a transac-
tion using a simple form that gathers names and email addresses for a mail-
ing list; however, it is typical of the process for many forms.

1. Your visitor, let’s call her Sally, opens the page with a web form in the
browser window. The browser sees the form control elements in the
markup and renders them with the appropriate form controls on the
page, including two text entry fields and a submit button (shown in
Figure 9-1).

2. Sally would like to sign up for this mailing list, so she enters her name
and email address into the fields and submits the form by hitting the
“Submit” button.

3. The browser collects the information she entered, encodes it (see the
sidebar A Word About Encoding), and sends it to the web application
on the server.

A Word About
Encoding
Form data is encoded using the
same method used for URLs in which
spaces and other characters that are
not permitted are translated into
their hexadecimal equivalents. For
example, each space character in the
collected form data is represented by
the character string %20, and a slash
(/) character is replaced with %2F. You
don’t need to worry about this; the
browser handles it automatically.

4. The web application accepts the informa-
tion and processes it (that is, does what-
ever it is programmed to do with it). In this
example, the name and email address are
added to a database.

5. The web application also returns a
response. The kind of response sent back
depends on the content and purpose of the
form. Here, the response is a simple web
page that contains a thank you for signing
up for the mailing list. Other applications
might respond by reloading the HTML
form page with updated information, by
moving the user on to another related
form page, or by issuing an error message
if the form is not filled out correctly, to
name only a few examples.

6. The server sends the web application’s
response back to the browser where it
is displayed. Sally can see that the form
worked and that she has been added to the
mailing list.

Figure 9-1. What happens behind the
scenes when a web form is submitted

Name = Sally Strongarm
Email = strongarm@example.com

Response
(HTML)

Data

Web application

The form Element

Chapter 9, Forms 149

The form Element
<form>...</form>
Interactive form

Forms are added to web pages using (no surprise here) the form element. The
form element is a container for all the content of the form, including some
number of form controls, such as text entry fields and buttons. It may also
contain block elements (h1, p, and lists, for example). However, it may not
contain another form element.

This sample source document contains a form similar to the one shown in
Figure 9-1:

<!DOCTYPE html>
<html>
<head>
 <title>Mailing List Signup</title>
 <meta charset="utf-8">
</head>
<body>
 <h1>Mailing List Signup</h1>

 <form action="/mailinglist.php" method="post">
 <fieldset>
 <legend>Join our email list</legend>
 <p>Get news about the band such as tour dates and special MP3
releases sent to your own in-box.</p>

 <label for="firstlast">Name:</label>
 <input type="text" name="username" id="firstlast">
 <label for="email">Email:</label>
 <input type="text" name="email" id="email">

 <input type="submit" value="Submit">
 </fieldset>
 </form>

</body>
</html>

In addition to being a container for form control elements, the form element
has some attributes that are necessary for interacting with the form-process-
ing program on the server. Let’s take a look at each.

The action attribute
The action attribute provides the location (URL) of the application or script
(sometimes called the action page) that will be used to process the form. The
action attribute in this example sends the data to a script called mailinglist.
php.

<form action="/mailinglist.php" method="post">...</form>

Be careful not to nest form elements
or allow them to overlap. A form
element must be closed before the
next one begins.

T i p

n oT e

It is current best practice to wrap form
controls in semantic HTML elements
such as lists or divs. Ordered lists, as
shown in this example, are a popular
solution, but know that there are often
default styles that need to be cleared
out before styling them, particularly on
mobile browsers.

Part II, HTML Markup for structure150

The form Element

The .php suffix indicates that this form is processed by a script written in the
PHP scripting language, but web forms may be processed using one of the
following technologies:

•	 PHP (.php) is an open source scripting language most commonly used
with the Apache web server.

•	 Microsoft’s ASP.NET (Active Server Pages) (.asp) is a programming envi-
ronment for the Microsoft Internet Information Server (IIS).

•	 Ruby on Rails. Ruby is the programming language that is used with the
Rails platform. Many popular web applications are built with it.

•	 JavaServer Pages (.jsp) is a Java-based technology similar to ASP.

•	 Python is a popular scripting language for web and server applications.

There are other forms processing options that may have their own suffixes or
none at all (as is the case for the Ruby on Rails platform). Check with your
programmer, server administrator, or script documentation for the proper
name and location of the program to be provided by the action attribute.

Sometimes there is form-processing code such as PHP embedded right in
the HTML file. In that case, leave the action empty and the form will post
to the page itself.

The method attribute
The method attribute specifies how the information should be sent to the
server. Let’s use this data gathered from the sample form in Figure 9-1 as
an example.

username = Sally Strongarm
email = strongarm@example.com

When the browser encodes that information for its trip to the server, it looks
like this (see the earlier sidebar if you need a refresher on encoding):

username=Sally%20Strongarm&email=strongarm%40example.com

There are only two methods for sending this encoded data to the server:
POST or GET, indicated using the method attribute in the form element. The
method is optional and will default to GET if omitted. We’ll look at the dif-
ference between the two methods in the following sections. Our example
uses the POST method, as shown here:

<form action="/cgi-bin/mailinglist.pl" method="POST">...</form>

The POsT method
When the form’s method is set to POST, the browser sends a separate server
request containing some special headers followed by the data. Only the
server sees the content of this request, thus it is the best method for sending
secure information such as credit card or other personal information.

Getting Your Forms
to Work
If you aren’t a programmer, don’t
fret. You have a few options for
getting your forms operational.

Use hosting plan goodies
Many site hosting plans include
access to scripts for simple
functions such as mailing lists. More
advanced plans may even provide
everything you need to add a full
shopping cart system to your site
as part of your monthly hosting
fee. Documentation or a technical
support person should be available
to help you use them.

Hire a programmer
If you need a custom solution, you
may need to hire a programmer
who has server-side programming
skills. Tell your programmer what
you are looking to accomplish with
your form and he or she will suggest
a solution. Again, you need to make
sure you have permission to install
scripts on your server under your
current hosting plan, and that the
server supports the language you
choose.

Variables and Content

Chapter 9, Forms 151

The POST method is also preferable for sending a lot of data, such as a
lengthy text entry, because there is no character limit as there is for GET.

The GET method
With the GET method, the encoded form data gets tacked right onto the
URL sent to the server. A question mark character separates the URL from
the following data, as shown here:

get http://www.bandname.com/cgi-bin/mailinglist.pl?name=Sally%20Strongar
m&email=strongarm%40example.com

The GET method is appropriate if you want users to be able to bookmark
the results of a form submission (such as a list of search results). Because the
content of the form is in plain sight, GET is not appropriate for forms with
private personal or financial information. In addition, GET may not be used
when the form is used to upload a file.

In this chapter, we’ll stick with the more prevalent POST method. Now that
we’ve gotten through the technical aspects of the form element, we can take
on the real meat of forms: form controls.

Variables and Content
Web forms use a variety of controls that allow users to enter information
or choose options. Control types include various text entry fields, buttons,
menus, and a few controls with special functions. They are added to the
document using a collection of form control elements that we’ll be examin-
ing one by one in the upcoming Great Form Control Roundup section.

As a web designer, it is important to be familiar with control options to make
your forms easy and intuitive to use. It is also useful to have an idea of what
form controls are doing behind the scenes.

The name attribute
The job of a form control is to collect one bit of information from a user.
In the form example a few pages back, text entry fields collect the visitor’s
name and email address. To use the technical term, “username” and “email”
are two variables collected by the form. The data entered by the user (“Sally
Strongarm” and “strongarm@example.com”) is the value or content of the
variable.

The name attribute provides the variable name for the control. In this exam-
ple, the text gathered by a textarea element is defined as the “comment”
variable:

<textarea name="comment" rows="4" cols="45" placeholder="Leave us a
comment."></textarea>

n oT e

POST and GET are not case-sensitive
and are commonly listed in all upper-
case by convention. In XHTML docu-
ments, however, the value of the method
attribute (post or get) must be provided
in all lowercase letters.

http://www.bandname.com/cgi-bin/mailinglist.pl?name=Sally%20Strongarm&email=strongarm%40example.com
http://www.bandname.com/cgi-bin/mailinglist.pl?name=Sally%20Strongarm&email=strongarm%40example.com

Part II, HTML Markup for structure152

The Great Form Control Roundup

When a user enters a comment in the field (“This is the best band ever!”), it
would be passed to the server as a name/value (variable/content) pair like this:

comment=This%20is%20the%20best%20band%20ever%21

All form control elements must include a name attribute so the form-process-
ing application can sort the information. You may include a name attribute
for submit and reset button elements, but they are not required, because
they have special functions (submitting or resetting the form) not related to
data collection.

Naming your variables
You can’t just name controls willy-nilly. The web application that processes
the data is programmed to look for specific variable names. If you are design-
ing a form to work with a preexisting application or script, you need to find
out the specific variable names to use in the form so they are speaking the
same language. You can get the variable names from the developer you are
working with, your system administrator, or from the instructions provided
with a ready-to-use script on your server.

If the script or application will be created later, be sure to name your vari-
ables simply and descriptively and to document them well. In addition, each
variable must be named uniquely, that is, the same name may not be used
for two variables. You should also avoid putting character spaces in variable
names; use an underscore or hyphen instead.

We’ve covered the basics of the form element and how variables are named.
Now we can get to the real meat of form markup: the controls.

The Great Form Control Roundup
This is the fun part—playing with the markup that adds form controls to the
page. This section introduces the elements used to create:

•	 Text entry controls

•	 Specialized text entry controls

•	 Submit and reset buttons

•	 Radio and checkbox buttons

•	 Pull-down and scrolling menus

•	 File selection and upload control

•	 Hidden controls

•	 Dates and times (HTML5)

•	 Numerical controls (HTML5)

•	 Color picker control (HTML5)

The Great Form Control Roundup

Chapter 9, Forms 153

We’ll pause along the way to allow you to try them out by constructing the
questionnaire form shown in Figure 9-2.

As you will see, the majority of controls are added to a form using the input
element. The functionality and appearance of the input element changes
based on the value of the type attribute in the tag. In HTML5, there are
twenty-three different types of input controls. We’ll take a look at them all.

Figure 9-2. The contest entry form we’ll be building in the exercises in this chapter.

Text entry controls
One of the most common tasks in a web form is to enter text information.
Which element you use depends on whether users are asked to enter a single
line of text (input) or multiple lines (textarea).

n oT e

The markup examples throughout this section include the label element, which
is used to improve accessibility. We will discuss label in more detail in the Form
Accessibility Features section later in this chapter, but in the meantime, I want you
to get used to seeing proper form markup.

n oT e

The attributes associated with each
input type are listed in Table 9-1 at the
end of this chapter.

Part II, HTML Markup for structure154

The Great Form Control Roundup

single-line text field
One of the most straightforward form input types is the text entry field used
for entering a single word or line of text. In fact, it is the default input type,
which means it is what you’ll get if you forget to include the type attribute
or include an unrecognized value. Add a text input field to a form with
the input element with its type attribute set to text, as shown here and in
Figure 9-3.

<label>City <input type="text" name="city" id="form-city"
value="Your Hometown" maxlength="50"></label>

There are a few attributes in there I’d like to point out.

name

The name attribute is required for indicating the variable name.

value

The value attribute specifies default text that appears in the field when
the form is loaded. When you reset a form, it returns to this value.

maxlength

By default, users can type an unlimited number of characters in a text
field regardless of its size (the display scrolls to the right if the text
exceeds the character width of the box). You can set a maximum char-
acter limit using the maxlength attribute if the forms processing program
you are using requires it.

Multiline text entry field
At times, you’ll want your users to be able enter more than just one line of text.
For these instances, use the textarea element that is replaced by a multiline,
scrollable text entry box when displayed by the browser (Figure 9-3).

Text entry �eld

Multi-line text entry
with text content.

Multi-line text entry
with placeholder text.

Figure 9-3. Examples of the text entry control options for web forms.

<input type="text">
Single-line text entry control

<textarea>...</textarea>
Multiline text entry control

n oT e

The specific rendering style of form
controls varies by operating system and
browser version.

The Great Form Control Roundup

Chapter 9, Forms 155

Unlike the empty input element, you can put content between the opening
and closing tags in the textarea element. The content of the textarea ele-
ment will show up in the text box when the form is displayed in the browser.
It will also get sent to the server when the form is submitted, so carefully
consider what goes there. It is not uncommon for developers to put nothing
between the opening and closing tags, and provide a hint of what should
go there with a title or placeholder attribute instead. The new HTML5
placeholder attribute can be used with textarea and other text-based input
types and is used to provide a short hint of how to fill in the field. It is not
supported on Android, older versions of Firefox (versions earlier than 3.6),
or IE as of this writing.

<p><label>Official contest entry

Tell us why you love the band. Five winners will get backstage
passes!

<textarea name="contest_entry" rows="5" cols="50">The band is totally
awesome!</textarea></label></p>

<p>Official contest entry:

Tell us why you love the band. Five winners will get backstage
passes!

<textarea name="contest_entry" placeholder="50 words or less">
</textarea>
</p>

The rows and cols attributes are a way of specifying the size of the textarea
using markup, but it is more commonly sized with CSS. rows specifies the
number of lines the text area should display, and cols specifies the width in
number of characters. Scrollbars will be provided if the user types more text
than fits in the allotted space.

There are also a few attributes not shown in the example. The wrap attribute
specifies whether the text should keep its line breaks when submitted. A
value of soft (the default) does not preserve line breaks, and hard does. The
maxlength attribute (new in HTML5) sets a limit on the number of characters
that can by typed into the field.

specialized text entry fields
In addition to the generic single-line text entry, there are a number of input
types for entering specific types of information such as passwords, search
terms, email addresses, telephone numbers, and URLS.

Password entry field
<input type="password">
Password text control

A password field works just like a text entry field, except the characters are
obscured	 from	 view	 using	 asterisk	 (*)	 or	 bullet	 (•)	 characters,	 or	 another	
character determined by the browser.

disabled and
readonly
The disabled and readonly
attributes can be added to any form
control element to prevent users
from selecting them. When a form
element is disabled, it cannot be
selected. Visual browsers may render
the control as grayed-out by default
(which you can change with CSS, of
course). The disabled state can only
be changed with a script. This is a
useful attribute for restricting access
to some form fields based on data
entered earlier in the form.

The readonly attribute prevents the
user from changing the value of the
form control (although it can be
selected). This enables developers to
use scripts to set values for controls
contingent on other data entered
earlier in the form. Inputs that
are readonly should have strong
visual cues that they are somehow
different than other inputs, or they
could be confusing to users who are
trying to change their values.

wa R n i n G

iOS ignores disabled on option
elements as of this writing (iOS 5
and earlier).

Part II, HTML Markup for structure156

The Great Form Control Roundup

It’s important to note that although the characters entered in the password
field are not visible to casual onlookers, the form does not encrypt the infor-
mation, so it should not be considered a real security measure.

Here is an example of the markup for a password field. Figure 9-4 shows
how it might look after the user enters a password in the field.

<label for="form-pswd">Log in:</label>

 <input type="password" name="pswd" maxlength="8" id="form-pswd">

Figure 9-4. Passwords are converted to bullets in the browser display.

HTML5 text inputs
Until HTML5, the only way to collect email addresses, telephone numbers,
URLs, or search terms was to insert a generic text input field. In HTML5,
the email, tel, url, and search input types give the browser a heads-up as
to what type of information to expect in the field. These new input types
use the same attributes as the generic text input type described earlier (name,
maxlength, size, and value), as well as a number of new HTML5 attributes.

All of these input types are typically displayed as single-line text inputs. But
browsers that support them can do some interesting things with the extra
semantic information. For example, Safari on iOS uses the input type to
provide a keyboard well-suited to the entry task, such as the keyboard fea-
turing a “Search” button for the search input type or a “.com” button when
the input type is set to url (Figure 9-5). Browsers usually add a one-click
“clear field” icon (usually a little X) in search fields. A supporting browser
could check the user’s input to see that it is valid, such as making sure text
entered in an email input follows standard email address structure (in the
past, you needed JavaScript for validation). For example, the Opera (Figure
9-6) and Chrome browsers display a warning if the input does not match the
expected format.

Not all browsers support the new HTML5 input types or support them
in the same way, but the good news is that if the type isn’t recognized,
the default generic text input is displayed instead, which works perfectly
fine. There is no reason not to start using them right away as a progressive
enhancement, even if you can’t reap the benefits of easy user input and
browser (client-side) validation.

<input type="search">
Search field

<input type="email">
Email address

<input type="tel">
Telephone number

<input type="url">
Location (URL)

The Great Form Control Roundup

Chapter 9, Forms 157

<input type="email"> <input type="search"> <input type="tel"> <input type="url">

Figure 9-5. Safari on iOS provides custom keyboards based on the input type.

Figure 9-6. Opera displays a warning when input does not match the expected email
format as part of its client-side validation support.

The datalist Element
The datalist element (new in HTML5) allows the author to
provide a drop-down menu of suggested values for any type
of text input. It gives the user some shortcuts to select from,
but if none are selected, the user can still type in her own text.
Within the datalist element, suggested values are marked up
as option elements. Use the list attribute in the input element
to associate it with the id of its respective datalist.

In the following example (Figure 9-7), a datalist suggests
several education level options for a text input.

<p>Education completed: <input type="text"
list="edulevel" name="education">

<datalist id="edulevel">
 <option value="High School">
 <option value="Bachelors Degree">
 <option value="Masters Degree">
 <option value="PhD">
</datalist>

As of this writing, only the Opera browser has implemented the
datalist element. Other browsers will ignore it and present a
simple text input, which is a perfectly acceptable fallback. You
could also use JavaScript to create datalist functionality (i.e., a
polyfill).

Figure 9-7. A datalist creates a pop-up menu of suggested
values for a text entry field.

Part II, HTML Markup for structure158

The Great Form Control Roundup

submit and reset buttons
There are several different kinds of buttons that can be added to web forms.
The most fundamental is the submit button. When clicked or tapped, the
submit button immediately sends the collected form data to the server for
processing. A reset button returns the form controls to the state they were
in when the form initially loaded. In other words, resetting the form doesn’t
simply clear all the fields.

Both submit and reset buttons are added using the input element. As men-
tioned earlier, because these buttons have specific functions that do not
include the entry of data, they are the only form control elements that do
not require the name attribute, although it is OK to add one if you need it.

Submit and reset buttons are straightforward to use. Just place them in
the appropriate place in the form, which in most cases is at the very end.
By default, the submit button displays with the label “Submit” or “Submit
Query” and the reset button is labeled “Reset.” Change the text on the but-
ton using the value attribute, as shown in the reset button in this example
(Figure 9-8).

<p><input type="submit"> <input type="reset" value="Start over"></p>

Figure 9-8. Submit and reset buttons.

The reset button is not used in forms as commonly as it used to be. That iss
because in contemporary form development, we use JavaScript to check the
validity of form inputs along the way, so the users get feedback as they go
along. With thoughtful design and assistance, fewer users should get to the
end of the form and need to reset the whole thing. Still, it is a good function
to be aware of.

At this point, you know enough about form markup to start building the
questionnaire shown in Figure 9-2. Exercise 9-1 walks you through the first
steps.

<input type="submit">
Submits the form data to the server

<input type="reset">
Resets the form controls to their default settings

A Few More Buttons
There are a handful of custom button
elements that are a little off the
beaten path for beginners, but in the
interest of thoroughness, here they
are tucked off in a sidebar.

Image buttons
<input type="image">

This type of input control allows you
to replace the submit button with
an image of your choice. The image
will appear flat, not like a 3-D button.
Unfortunately, this type of button
has accessibility issues, so be sure to
include a carefully chosen alt value.

Custom input button
<input type="button">

Setting the type of the input element
to “button” creates a button that can
be customized with JavaScript. It has
no predefined function on its own,
unlike submit and reset buttons.

The button element
<button>...</button>

The button element is a flexible
element for creating custom buttons
similar to those created with the
input element. The content of the
button element (text and/or images)
is what gets displayed on the button.

For more information on what you
can do with the button element, read
“Push My Button” by Aaron Gustafson
at digital-web.com/articles/push_
my_button.

The Great Form Control Roundup

Chapter 9, Forms 159

exercise 9-1 | starting the contest form
Here’s the scenario. You are the web designer in charge of creating the entry form for
the Forcefield Sneakers “Pimp My Shoes!” Contest. The copy editor has handed you a
sketch (Figure 9-9) of the form’s content, complete with notes of how some controls
should work. There are sticky notes from the programmer with information about the
script and variable names you need to use.

Your challenge is to turn the sketch into a functional online form. I’ve given you a
head start by creating a bare-bones document containing the text content and some
minimal markup and styles. This document, contest_entry.html, is available online at
www.learningwebdesign.com/4e/materials. The source for the entire finished form is
provided in Appendix A if you want to check your work.

“Pimp My Shoes” Contest Entry Form

Want to trade in your old sneakers for a custom pair of Forcefields?
Make a case for why your shoes have got to go and you may be
one of ten lucky winners.

Contest Entry Information

Name:

Email :

Phone:

My shoes are SO old…

 No more than 300 characters long

Design your custom Forcefields:
Custom shoe design

Color (choose one):
() Red
() Blue
() Black
() Silver

Features (choose as many as you want):
 [] Sparkley laces

[X] Metallic logo
 [] Light-up heels
 [] MP3-enabled
Size
(Sizes reflect standard men’s sizing):

Pimp My Shoes! Reset

5

This form should be sent to
http://www.learningwebdesign.com/

Add placeholder text

contest.phpvia the POST method.Name the text fields “name”,’ “email”,

“phone”, and “story”, respectively.

Change the Submit button text

Name the controls in this section "color",

"features[]", and "size", respectively. Note

that the brackets ([]) after "features"

are required in order for the script to

process it correctly.

Make sure metallic logo
is selected by default

Pull-down menu with
sizes 5 through 13

Figure 9-9. A sketch of the contest entry form.

Part II, HTML Markup for structure160

The Great Form Control Roundup

1. Open contest_entry.html in a text editor.

2. The first thing we’ll do is put everything after the intro paragraph into a form
element. The programmer has left a note specifying the action and the method to
use for this form. The resulting form element should look like this:

<form action="http://www.learningwebdesign.com/contest.php"
method="post">
...
</form>

3. In this exercise, we’ll work on the “Contest Entry Information” section of the
form. Start with the first three short text entry form controls that are marked up
appropriately as an unordered list. Here’s the first one; you insert the other two.

Name: <input type="text" name="username">

Hints: Choose the most appropriate input type for each entry field. Be sure to
name the input elements as specified in the programmer’s note.

4. Now add a multiline text area for the shoe description on a new line. Because we
aren’t writing a style sheet for this form, use markup to make it four rows long and
60 characters wide (in the real world, CSS is preferable because it gives you more
fine-tuned control).

Once it looks right, take it for a spin by entering some information and submitting the
form. You should get a response like the one shown in Figure 9-10 (yes, contact.php
actually works, but sorry, the contest is make-believe.)

My shoes are SO old...

<textarea name="story" rows="4" cols="60"
maxlength="300" placeholder="No more than 300
characters long"></textarea>

5. We’ll skip the rest of the form for now until we get a few
more controls under our belt, but we can add the submit
and reset buttons at the end, just before the </form>
tag. Note that we need to change the text on the submit
button.

<p><input type="submit" value="Pimp my shoes!">
<input type="reset"></p>
</form>

6. Now, save the document and open it in a browser. The
parts that are finished should generally match Figure 9-3. If
it doesn’t, then you have some more work to do.

Figure 9-10. You should see a response
page like this if your form is working.

The Great Form Control Roundup

Chapter 9, Forms 161

Radio and checkbox buttons
Both checkbox and radio buttons make it simple for your visitors to choose
from a number of provided options. They are similar in that they function
like little on/off switches that can be toggled by the user and are added using
the input element. They serve distinct functions, however.

A form control made up of a collection of radio buttons is appropriate when
only one option from the group is permitted—in other words, when the
selections are mutually exclusive (such as Yes or No, or Male or Female).
When one radio button is “on,” all of the others must be “off,” sort of the way
buttons used to work on old radios: press one button in and the rest pop out.

When checkboxes are grouped together, however, it is possible to select as
many or as few from the group as desired. This makes them the right choice
for lists in which more than one selection is okay.

Radio buttons
Radio buttons are added to a form using the input element with the type
attribute set to radio. Here is the syntax for a minimal radio button:

<input type="radio" name="variable" value="value">

The name attribute is required and plays an important role in binding mul-
tiple radio inputs into set. When you give a number of radio button inputs
the same name value (age in the following example), they create a group of
mutually exclusive options.

In this example, radio buttons are used as an interface for users to enter their
age group (a person can’t belong to more than one age group, so radio but-
tons are the right choice). Figure 9-11 shows how radio buttons are rendered
in the browser.

<p>How old are you?</p>

 <input type="radio" name="age" value="under24" checked> under
24
 <input type="radio" name="age" value="25-34"> 25 to 34
 <input type="radio" name="age" value="35-44"> 35 to 44
 <input type="radio" name="age" value="over45"> 45+

Notice that all of the input elements have the same variable name (“age”),
but their values are different. Because these are radio buttons, only one but-
ton can be checked at a time, and therefore, only one value will be sent to
the server for processing when the form is submitted.

n oT e

I have omitted the fieldset and label
elements from the code examples for
radio buttons, checkboxes, and menus
in order to keep the markup structure
as simple and clear as possible. In the
upcoming Form Accessibility Features
section, you will learn why it is impor-
tant to include them in your markup for
all form elements.

<input type="radio">
Radio button

Part II, HTML Markup for structure162

The Great Form Control Roundup

Radio buttons Checkbox buttons

Figure 9-11. Radio buttons (left) are appropriate when only one selection is permitted.
Checkboxes (right) are best when users may choose any number of choices, from none to
all of them.

You can decide which button is checked when the form loads by adding the
checked attribute to the input element. In this example, the button next to
“under 24” will be checked by default (see the note).

Checkbox buttons
<input type="checkbox">
Checkbox button

Checkboxes are added using the input element with its type set to checkbox.
As with radio buttons, you create groups of checkboxes by assigning them
the same name value. The difference, as we’ve already noted, is that more
than one checkbox may be checked at a time. The value of every checked
button will be sent to the server when the form is submitted. Here is an
example of a group of checkbox buttons used to indicate musical interests.
Figure 9-11 shows how they look in the browser:

<p>What type of music do you listen to?</p>

 <input type="checkbox" name="genre" value="punk" checked> Punk
rock
 <input type="checkbox" name="genre" value="indie" checked> Indie
rock
 <input type="checkbox" name="genre" value="hiphop"> Hip Hop
 <input type="checkbox" name="genre" value="rockabilly">
Rockabilly

Checkboxes don’t necessarily need to be used in groups, of course. In this
example, a single checkbox is used to allow visitors to opt in for special
promotions. The value of the control will be passed along to the server only
if the user checks the box.

<p><input type="checkbox" name="OptIn" value="yes"> Yes, send me news
and special promotions by email.</p>

In Exercise 9-2, you’ll get a chance to add both radio and checkbox buttons
to the contest entry form.

n oT e

XHTML syntax, the value of the
checked attribute must be explicitly set
to checked, as shown in the example.

<input type="radio" name="foo"
checked="checked" />

But in HTML syntax, you don’t need
to write out the value for the checked
attribute. It can be minimized, as shown
here:

<input type="radio" name="foo"
checked >

exercise 9-2 | Adding
radio buttons and
checkboxes
The next two questions in the
sneaker contest entry form use radio
buttons and checkboxes for selecting
options. Open the contest_entry.html
document and follow these steps.

1. In the Custom Shoe Design
section, there are lists of color and
feature options. The Color options
should be radio buttons because
shoes can be only one color.
Insert a radio button before each
option. Follow this example for
the remaining color options.

<input type="radio"
name="color" value="red">
Red

2. Mark up the Features options as
you did the Color options, but
this time, the type should be
checkbox. Be sure the variable
name for each is features[],
and that the metallic logo option
is preselected, as noted on the
sketch.

3. Save the document and check
your work by opening it in a
browser to make sure it looks
right, then submit the form
to make sure it’s functioning
properly.

The Great Form Control Roundup

Chapter 9, Forms 163

Menus
Another way to provide a list of choices is to put them in a drop-down or
scrolling menu. Menus tend to be more compact than groups of buttons and
checkboxes.

You add both drop-down and scrolling menus to a form with the select
element. Whether the menu pulls down or scrolls is the result of how you
specify its size and whether you allow more than one option to be selected.
Let’s take a look at both menu types.

Drop-down menus
The select element displays as a drop-down menu (also called a pull-down
menu) by default when no size is specified or if the size attribute is set to
1. In pull-down menus, only one item may be selected. Here’s an example
(shown in Figure 9-12):

<p>What is your favorite 80s band?
<select name="EightiesFave">
 <option>The Cure</option>
 <option>Cocteau Twins</option>
 <option>Tears for Fears</option>
 <option>Thompson Twins</option>
 <option value="EBTG">Everything But the Girl</option>
 <option>Depeche Mode</option>
 <option>The Smiths</option>
 <option>New Order</option>
</select>
</p>

Figure 9-12. Pull-down menus pop open when the user clicks on the arrow or bar.

You can see that the select element is just a container for a number of
option elements. The content of the chosen option element is what gets
passed to the web application when the form is submitted. If for some rea-
son you want to send a different value than what appears in the menu, use
the value attribute to provide an overriding value. For example, if someone
selects “Everything But the Girl” from the sample menu, the form submits
the value “EBTG” for the “EightiesFave” variable. For the others, the con-
tent between the option tags will be sent as the value.

You will make a menu like this one for selecting a shoe size in Exercise 9-3.

scrolling menus
To make the menu display as a scrolling list, simply specify the number of
lines you’d like to be visible using the size attribute. This example menu has

<select>...</select>
Menu control

<option>...</option>
An option within a menu

<optgroup>...</optgroup>
A logical grouping of options within a menu

Part II, HTML Markup for structure164

The Great Form Control Roundup

the same options as the previous one, except it has been set to display as a
scrolling list that is six lines tall (Figure 9-13).

Figure 9-13. A scrolling menu with multiple options selected.

<p>What 80s bands did you listen to?
<select name="EightiesBands" size="6" multiple>
 <option>The Cure</option>
 <option>Cocteau Twins</option>
 <option selected>Tears for Fears</option>
 <option selected>Thompson Twins</option>
 <option value="EBTG">Everything But the Girl</option>
 <option>Depeche Mode</option>
 <option>The Smiths</option>
 <option>New Order</option>
</select>
</p>

You may notice a few new attributes tucked in there. The multiple attribute
allows users to make more than one selection from the scrolling list. Note
that pull-down menus do not allow multiple selections; when the browser
detects the multiple attribute, it displays a small scrolling menu automati-
cally by default.

Use the selected attribute in an option element to make it the default value
for the menu control. Selected options are highlighted when the form loads.
The selected attribute can be used with pull-down menus as well.

Grouping menu options
You can use the optgroup element to create conceptual groups of options.
The required label attribute in the optgroup element provides the heading
for the group. Figure 9-14 shows how option groups are rendered in modern
browsers.

<select name="icecream" size="7" multiple>
 <optgroup label="traditional">
 <option>vanilla</option>
 <option>chocolate</option>
 </optgroup>
 <optgroup label="fancy">
 <option>Super praline</option>
 <option>Nut surprise</option>
 <option>Candy corn</option>
 </optgroup>
</select>

n oT e

The label attribute in the option element
is not the same as the label element used
to improve accessibility (discussed later
in this chapter).

The Great Form Control Roundup

Chapter 9, Forms 165

Figure 9-14. Option groups as rendered in a modern browser.

exercise 9-3 | Adding a menu
The only other control that needs to be added to the contest entry is a pull-down
menu for selecting a shoe size.

1. Insert a select menu element with the shoe sizes (5 to 13).

<p>Size (sizes reflect men's sizing):
 <select name="size" size="1">
 <option>5</option>
 ...insert more options here...
 </select>
</p>

2. Save the document and check it in a browser. You can submit the form, too, to be
sure that it’s working. You should get the Thank You response page listing all of the
information you entered in the form.

Congratulations! You’ve built your first working web form. In Exercise 9-4, we’ll add
markup that makes it more accessible to assistive devices. But first, we have a few
more control types to cover.

File selection control
Web forms can collect more than just data. They can also be used to trans-
mit external documents from a user’s hard drive. For example, a printing
company could use a web form to upload artwork for a business card order.
A magazine could use a form on their site to collect digital photos for a photo
contest.

The file selection control makes it possible for users to select a document
from the hard drive to be submitted with the form data. It is added to the
form using our old friend the input element with its type set to file.

The markup sample here and Figure 9-15 show a file selection control used
for photo submissions.

<form action="/client.php" method="POST" enctype="multipart/form-data">
 <label>Send a photo to be used as your online icon
 (optional)

 <input type="file" name="photo" size="28"><label>
</form>

<input type="file">
File selection field

Part II, HTML Markup for structure166

The Great Form Control Roundup

The file upload widget varies by browser and operating system. It may be
a text field with a button to browse the hard drive, as Firefox does (Figure
9-15, top) or it might be just a button, which is how Chrome displays it
(bottom).

It is important to note that when a form contains a file selection input
element, you must specify the encoding type (enctype) of the form as mul-
tipart/form-data and use the POST method. The size attribute in this
example sets the character width of the text field (although it could also be
controlled with a CSS rule) if the browser displays one.

File input (Firefox)

File input (Chrome)

Figure 9-15. A file selection form field.

Hidden controls
There may be times when you need to send information to the form process-
ing application that does not come from the user. In these instances, you can
use a hidden form control that sends data when the form is submitted, but
is not visible when the form is displayed in a browser.

Hidden controls are added using the input element with the type set to hid-
den. Its sole purpose is to pass a name/value pair to the server when the form
is submitted. In this example, a hidden form element is used to provide the
location of the appropriate thank-you document to display when the trans-
action is complete.

<input type="hidden" name="success-link" value="http://www.example.com/
littlechair_thankyou.html">

I’ve worked with forms that have had dozens of hidden controls in the form
element before getting to the parts that the user actually fills out. This is
the kind of information you get from the application programmer, system
administrator, or whoever is helping you get your forms processed. If you
are using a canned script, be sure to check the accompanying instructions to
see if any hidden form variables are required.

<input type="hidden">
Hidden control field

wa R n i n G

It is possible for users to access and
manipulate hidden form controls. If
you should become a professional web
developer, you will learn to program
defensively for this sort of thing.

The Great Form Control Roundup

Chapter 9, Forms 167

Date and time controls (HTML5)
If you’ve ever booked a hotel or a flight online, you’ve no doubt used a little
calendar widget for choosing the date. Chances are that little calendar was
created using JavaScript. HTML5 introduced six new input types that make
date and time selection widgets part of a browser’s standard built-in display
capabilities (just as they can display checkboxes, pop-up menus, and other
widgets today). The date and time pickers are implemented on only a few
browsers as of this writing, such as Opera, shown in Figure 9-16, but on
non-supporting browsers, the date and time input types display as a per-
fectly usable text entry field instead.

<input type="date"> <input type="time"> <input type="datetime">

<input type="week"><input type="month"><input type="datetime-local">

Figure 9-16. Date and time picker inputs in (Opera 11 on Mac OS X).

The new date- and time-related input types are as follows:

<input type="date" name="name" value="2004-01-14">

Creates a date input control, such as a pop-up calendar, for specifying a
date (year, month, day). The initial value must be provided in ISO date
format (YYYY-MM-DD).

<input type="time" name="name" value="03:13:00">

Creates a time input control for specifying a time (hour, minute, seconds,
fractional sections) with no time zone indicated. The value is provided
as hh:mm:ss.

<input type="date">
Date input control

<input type="time">
Time input control

<input type="datetime">
Date/time control with time zone

<input type="datetime-local">
Date/time control with no time zone

<input type="month">
Specifies a month in a year

<input type="week">
Specifies a particular week in a year

Part II, HTML Markup for structure168

The Great Form Control Roundup

<input type="datetime" name="name" value="2004-01-14T03:13:00-5:00">

Creates a combined date/time input control that includes time zone
information. The value is an ISO-formatted date and time with time zone
relative to GMT, as we saw for the time element in Chapter 5 (YYYY-MM-
DDThh:mm:ssTZD).

<input type="datetime-local" name="name" value="2004-01-14T03:13:00">

Creates a combined date/time input control with no time zone informa-
tion (YYYY-MM-DDThh:mm:ss).

<input type="month" name="name" value="2004-01">

Creates a date input control specifying a particular month in a year
(YYYY-MM).

<input type="week" name="name" value="2004-W2">

Creates a date input control for specifying a particular week in a year
using an ISO week numbering format (YYYY-W#).

Numerical inputs (HTML5)
The number and range input types collect numerical data. For the number
input, the browser may supply a spinner widget for selecting a specific
numerical value (a text input may display in user agents that don’t sup-
port the input type). The range input is typically displayed as a slider
(Figure 9-17) that allows the user to select a value within a specified range.

<label>Number of guests <input type="number" name="guests" min="1"
max="6"></label>

<label>Satisfaction (0 to 10) <input type="range" name="satis" min="0"
max="10" step="1"></label>

<input type="number">

<input type="range">

Figure 9-17. The number and range HTML5 input types (in Opera 11 on Mac OS X).

<input type="number">
Number input

<input type="range">
Slider input

The Great Form Control Roundup

Chapter 9, Forms 169

Both the number and range input types accept the min and max attributes for
specifying the minimum and maximum values allowed for the input (again,
the browser could check that the user input complies with the constraint).
Both min and max are optional, and you can also set one without the other.

The step attribute allows developers to specify the acceptable increments for
numerical input. The default is 1. A value of .5 would permit values 1, 1.5,
2, 2.5, etc.; a value of 100 would permit 100, 200, 300, and so on. You can
also set the step attribute to any to explicitly accept any value increment.

Again, browsers that don’t support these new input types display a standard
text input field instead, which is a fine fallback.

Color selector (HTML5)
The intent of the color control type is to create a pop-up color picker for
visually selecting a color value similar to those used in operating systems
or image-editing programs. Values are provided in hexadecimal RGB values
(#RRGGBB). Figure 9-18 shows the color picker widget in Opera 11. Non-
supporting browsers display the default text input instead.

<label>Your favorite color <input type="color" name="favorite"></label>

Figure 9-18. The color input type (in Opera 11 on Mac OS X).

That wraps up the form control roundup. Learning how to insert form
controls is one part of the forms production process, but any web developer
worth her salt will take the time to make sure the form is as accessible as
possible. Fortunately, there are a few things we can do in markup to describe
the form’s structure.

<input type="color">
Color picker

Part II, HTML Markup for structure170

The Great Form Control Roundup

A Few More HTML5 Form Elements
For the sake of completeness, let’s look at the remaining form elements that are new
in HTML5. As of this writing, they are poorly supported, and are somewhat esoteric
anyway, so you may wait a while to add these to your HTML toolbox. We’ve already
covered the datalist element for providing suggested values for text inputs. HTML5
also introduced the following elements:

progress

<progress>…</progress>
Indicates the state of an ongoing process

The progress element gives users feedback on the state of an ongoing process, such
as a file download. It can have a specific end value (provided with the max attribute)
or just indicate that something is happening (such as waiting for a server to respond).

Percent downloaded: <progress max="100" name="fave">0</progress>

meter

<meter>…</meter>
Indicates the state of an ongoing process

meter is similar to progress, but it always represents a measurement within a known
range of values (also known as a gauge). It has a number of attributes: min and max
indicate the highest and lowest values for the range; low and high could be used to
trigger warnings at undesirable levels; and optimum specifies a preferred value. The
values would most likely be updated with JavaScript dynamically during the process.

<meter min="0" max="100" name="download">50%</meter>

output

<output>…</output>
Calculated output value

Simply put, the output element provides a way to indicate the results of a calculation
by a script or program and associate it with inputs that affected the calculation.

keygen

<keygen>
Key pair generator

The keygen element represents a control for making a key pair (used to ensure
privacy). When the form is submitted, the private key is stored locally, and the public
key is packaged and sent to the server. Don’t worry; I’m a little foggy on what this
all means, too. You can read about public-key cryptography (en.wikipedia.org/wiki/
Public-key_cryptography) and explain it to me when you figure it out.

Form Accessibility Features

Chapter 9, Forms 171

Form Accessibility Features
It is essential to consider how users without the benefit of visual browsers
will be able to understand and navigate through your web forms. The label,
fieldset, and legend form elements improve accessibility by making the
semantic connections between the components of a form clear. The resulting
markup is not only more semantically rich, but there are also more elements
available to act as “hooks” for style sheet rules. Everybody wins!

Labels
Although we may see the label “Address” right next to a text field for enter-
ing an address in a visual browser, in the source, the label and field input
may be separated. The label element associates descriptive text with its
respective form field. This provides important context for users with speech-
based browsers.

Each label element is associated with exactly one form control. There are
two ways to use it. One method, called implicit association, nests the control
and its description within a label element. In the following example, labels
are assigned to individual checkboxes and their related text descriptions. (By
the way, this is the way to label radio buttons and checkboxes. You can’t
assign a label to the entire group.)

 <label><input type="checkbox" name="genre" value="punk"> Punk
rock</label>
 <label><input type="checkbox" name="genre" value="indie"> Indie
rock</label>
 <label><input type="checkbox" name="genre" value="hiphop"> Hip
Hop</label>
 <label><input type="checkbox" name="genre" value="rockabilly">
Rockabilly</label>

The other method, called explicit association, matches the label with the
control’s id reference. The for attribute says which control the label is for.
This approach is useful when the control is not directly next to its descriptive
text in the source. It also offers the potential advantage of keeping the label
and the control as two distinct elements, which may come in handy when
aligning them with style sheets.

<label for="form-login-username">Login account</label>
<input type="text" name="login" id="form-login-username">

<label for="form-login-password">Password</label>
<input type="password" name="password" id="form-login-password">

Another advantage to using labels is that users can click or tap anywhere on
them to select the form element. Users with touch devices will appreciate the
larger tap target.

wa R n i n G

iOS devices as of this writing do not
make implicit labels clickable, so that
behavior needs to be created with
JavaScript. I know we haven’t done any
JavaScript yet, but if you are wondering,
the fix looks like this:

document.getElementsByTagName
('label').setAttribute
('onclick','');

To keep form-related ids distinct
from other ids on the page, consider
prefacing them with “form-” as shown
in the examples.

Another technique for keeping forms
organized is to give the form element
an ID name and include it as a prefix
in the IDs for the controls it contains
as follows:

<form id="form-login">

<input id="form-login-
username">

<input id="form-login-
password">

T i p

Part II, HTML Markup for structure172

Form Accessibility Features

fieldset and legend
The fieldset element indicates a logical group of form controls. A fieldset
may also include a legend element that provides a caption for the enclosed
fields.

Figure 9-19 shows the default rendering of the following example, but you
could use style sheets to change the way the fieldset and legend appear.

<fieldset>
 <legend>Mailing List Sign-up</legend>

 <label>Add me to your mailing list <input type="radio"
 name="list" value="yes" checked="checked"></label>
 <label>No thanks <input type="radio" name="list" value="no">
 </label>

</fieldset>

<fieldset>
 <legend>Customer Information</legend>

 <label>Full name: <input type="text" name="username"></label></
li>
 <label>Email: <input type="text" name="email"></label>
 <label>State: <input type="text" name="state"></label>

</fieldset>

Figure 9-19. The default rendering of fieldsets and legends.

wa R n i n G

Fieldsets and legends tend to throw some
curveballs when it comes to styling. For
example, background colors in fieldsets
are handled differently from browser
to browser. Legends are unique in that
their text doesn’t wrap. The solution is
to put a span or b element in them and
control presentation of the contained
element without sacrificing accessibility.
Be sure to do lots of testing if you style
these form elements.

Form Layout and Design

Chapter 9, Forms 173

exercise 9-4 | labels and fieldsets
Our contest form is working, but we need to label it
appropriately and create some fieldsets to make it more usable
on assistive devices. Once again, open the contest_entry.html
document and follow these steps.

I like to start with the broad strokes and fill in details later, so
we’ll begin this exercise by organizing the form controls into
fieldsets, and then we’ll do all the labeling. You could do it the
other way around, and ideally, you’d just mark up the labels and
fieldsets as you go along instead of adding them all later.

1. The “Contest Entry Information” at the top of the form
is definitely conceptually related, so let’s wrap it all in a
fieldset element. Change the markup of the section title
from a paragraph (p) to a legend for the fieldset.

<fieldset>
 <legend>Contest Entry Information</legend>

 Name: <input type="text"
name="username">
 …

</fieldset>

2. Next, group the Color, Features, and Size questions in a big
fieldset with the legend “Custom Shoe Design” (the text is
there; you just need to change it from a p to a legend).

<h2>Design your custom Forcefields:</h2>
<fieldset>
<legend>Custom Shoe Design</legend>
 Color…
 Features…
 Size…
</fieldset>

3. Create another fieldset just for the Color options, again
changing the description in a paragraph to a legend. Do
the same for the Features and Size sections. In the end,
you will have three fieldsets contained within the larger
“Custom Shoe Design” fieldset. When you are done, save
your document and open it in a browser. It should now look
very close to the final form shown in Figure 9-2, given the
expected browser differences.

<fieldset>
<legend>Color (choose one):</legend>
 …
</fieldset>

4. OK, now let’s get some labels in there. In the Contest Entry
Information fieldset, explicitly tie the label to the text input
using the for/id label method. I’ve done the first one for you;
you do the other three.

<label for="form-name">Name:</label> <input
type="text" name="username" id="form-name">

5. For the radio and checkbox buttons, wrap the label element
around the input and its value label. In this way, the button
will be selected when the user clicks or taps anywhere inside
the label element. Here is the first one; you do the other
seven.

<label><input type="radio" name="color"
value="red"> Red</label>

Save your document, and you’re done! Labels don’t have
any effect on how the form looks by default, but you can
feel good about the added semantic value you’ve added
and maybe even use them to apply styles at another time.

Form Layout and Design
I can’t close this chapter without saying a few words about form design, even
though this chapter is about markup, not presentation.

Usable forms
A poorly designed form can ruin a user’s experience on your site and nega-
tively impact your business goals. Badly designed forms mean lost custom-
ers, so it is critical to get it right—both on the desktop and for small-screen
devices with their special requirements. You want the path to a purchase or
other action to be as frictionless as possible.

Part II, HTML Markup for structure174

Form Layout and Design

The topic of good web form design is a rich one that could fill a book in
itself. In fact, there is such a book: Web Form Design (Rosenfeld Media,
2008) by web form expert Luke Wroblewski, and I recommend it highly.
Luke’s subsequent book, Mobile First (A Book Apart, 2011), includes tips for
how to format forms in a mobile context. You can browse over a hundred
articles about forms on his site here: www.lukew.com/ff?tag=forms.

Here I’ll offer just a very small sampling of tips from Web Form Design to get
you started, but the whole book is worth a read.

Avoid unnecessary questions.

Help your users get through your form easily as possible by not includ-
ing questions that are not absolutely necessary to the task at hand. Extra
questions, in addition to slowing things down, may make a user wary
of your motivations for asking. If you have another way of getting the
information (for example, the type of credit card can be determined from
the first four numbers of the account), then use alternative means and
don’t put the burden on the user. If there is information that might be
nice to have but is not required, consider asking at a later time, after the
form has been submitted and you have built a relationship with the user.

Consider impact of label placement.

The position of the label relative to the input affects the time it takes to
fill out the form. The less the user’s eye needs to bounce around the page,
the quicker the form completion. Putting the labels above their respec-
tive fields creates a single alignment for faster scans and completion,
particularly when asking for familiar information (username, address,
etc.). Top-positioned labels can also accommodate labels of varying
lengths and work best on narrow, small-screen devices. They do result in
a longer form, however, so if vertical space is a concern, you can position
the labels to the left of the inputs. Left alignment of labels results in the
slowest form completion, but it may be appropriate if you want the user
to slow down or be able to scan and consider the types of information
required in the form.

Choose input types carefully.

As you’ve seen in this chapter, there are quite a few input types to
choose from, and sometimes it’s not easy to decide which one to use. For
example, a list of options could be presented as a pull-down menu or a
number of choices with checkboxes. Weigh the pros and cons of each
control type carefully, and follow up with user testing.

Group related inputs.

It is easier to parse the many fields, menus, and buttons in a form if they
are visually grouped by related topic. For example, a user’s contact infor-
mation could be presented in a compact group so that five or six inputs
are perceived as one unit. Usually, all you need is a very subtle indication,
such as a fine horizontal rule and some extra space. Don’t overdo it.

Test Yourself

Chapter 9, Forms 175

Clarify primary and secondary actions.

The primary action at the end of the form is usually some form of Submit
button (“Buy,” “Register,” etc.) that signals the completion of the form
and the readiness to move forward. You want that button to be visually
dominant and easy to find (aligning it along the main axis of the form
alignment is helpful as well). Secondary actions tend to take you a step
back, such as clearing or resetting the form. If you must include a second-
ary action, make sure that it is styled to look different and less important
than the primary action. It is also a good idea to provide an opportunity
to undo the action.

styling Forms
As we’ve seen in this chapter, the default rendering of form markup is not
up to par with the quality we see on most professional web forms today. As
for other elements, you can use style sheets to create a clean form layout as
well as change the appearance of most form controls. Something as simple
as nice alignment and a look that is consistent with the rest of your site can
go a long way toward improving the impression you make on a user.

Keep in mind that form widgets are drawn by the browser and are informed
by operating system conventions. However, you can still apply dimensions,
margins, fonts, colors, borders, and background effects to form elements
such as text inputs, select menus, textareas, fieldsets, labels, and legends.
Just be sure to test in a variety of browsers to check for unpleasant surprises.
Chapter 18, CSS Techniques in Part III lists some specific techniques once
you have more experience with CSS. For more help, a web search for “CSS
for forms” will turn up a number of tutorials.

Test Yourself
Ready to put your web form know-how to the test? Here are a few questions
to make sure you’ve gotten the basics.

1. Decide whether each of these forms should be sent via the GET or POST
method:

a. A form for accessing your bank account online ________

b. A form for sending t-shirt artwork to the printer ________

c. A form for searching archived articles ________

d. A form for collecting long essay entries ________

Part II, HTML Markup for structure176

Element Review: Forms

2. Which form control element is best suited for the following tasks? When
the answer is “input,” be sure to also include the type. Some tasks may
have more than one correct answer.

a. Choose your astrological sign from 12 signs.

b. Indicate whether you have a history of heart disease (yes or no).

c. Write up a book review.

d. Select your favorite ice cream flavors from a list of eight flavors.

e. Select your favorite ice cream flavors from a list of 25 flavors.

3. Each of these markup examples contains an error. Can you spot what
it is?

a. <input name="country" value="Your country here.">

b. <checkbox name="color" value="teal">

c. <select name="popsicle">
 <option value="orange">
 <option value="grape">
 <option value="cherry">
 </select>

d. <input type="password">

e. <textarea name="essay" height="6" width="100">Your story.</textarea>

Element Review: Forms
We covered this impressive list of elements and attributes related to forms
in this chapter. Elements marked with (HTML5) are new in the HTML5
specification.

Element and attributes Description

button Generic input button

name="text" Supplies a unique variable name for the control

type="submit|reset|button" The type of custom button

value="text" Specifies the value to be sent to the server

datalist [HTML5] Provides a list of options for text inputs

fieldset Groups related controls and labels

form

action="url"

method="get|post"

enctype="content type"

Form element

Location of forms processing program (required)

The method used to submit the form data

The encoding method, generally either application/x-www-form-urlencoded

(default) or multipart/form-data

Element Review: Forms

Chapter 9, Forms 177

Element and attributes Description

input Creates a variety of controls, based on the type value

autofocus Indicates the control should be ready for input when the document loads

type="submit|reset|button|text
|password|checkbox|radio|image
|file|hidden|email|tel|search|
url|date|time|datetime|dateti
me-local|month|week|number|rang-
e|color "

The type of input

disabled Associates the control with a specified form

form="form id value"

See Table 9-1 for a full list of attributes
associated with each input type.

Disables the input so it cannot be selected

keygen [HTML5] Generates key pairs for secure transaction certificates

autofocus Indicates the control should be highlighted and ready for input when the document loads

challenge="challenge string" Provides a challenge string to be submitted with the key

disabled Disables the control so it cannot be selected

form="form id value" Associates the control with a specified form

keytype="keyword" Identifies the type of key to be generated (e.g., rsa or ec)

name="text" Gives control an identifying name

label Attaches information to controls

for="text" Identifies the associated control by its id reference

form="form id value" Associates the control with a specified form

legend Assigns a caption to a fieldset

meter [HTML5] Represents a fractional value within a known range

form="form id value" Associates the control with a specified form

high="number" Indicates the range that is considered “high” for the gauge

low="number" Indicates the range that is considered “low” for the gauge

max="number" Specifies the highest value for the range

min="number" Specifies the lowest value for the range

optimum="number" Indicates the number considered to be “optimum”

value="number" Specifies the actual or measured value

optgroup Defines a group of options

disabled Disables the optgroup so it cannot be selected

label="text" Supplies label for a group of options

option An option within a select menu control

disabled Disables the option so it cannot be selected

label="text" Supplies an alternate label for the option

selected Preselects the option

value="text" Supplies an alternate value for the option

Part II, HTML Markup for structure178

Element Review: Forms

Element and attributes Description

output [HTML5] Represents the results of a calculation

for="text" Creates relationship between output and another element

form="form id value" Associates the control with a specified form

name="text" Supplies a unique variable name for the control

progress [HTML5] Represents the completion progress of a task (can be used even if the maximum value
of the task is not known)

form="form id value" Associates the control with a specified form

max="number" Specifies the total value or final size of the task

value="number" Specifies how much of the task has been completed

select Pull-down menu or scrolling list

autofocus Indicates the control should be highlighted and ready for input when the docu-
ment loads

disabled Indicates the control is nonfunctional. Can be activated with a script.

form="form id value" Associates the control with a specified form

multiple Allows multiple selections in a scrolling list

name="text" Supplies a unique variable name for the control

readonly Makes the control unalterable by the user

required Indicates the user input is required for this control

size="number" The height of the scrolling list in text lines

textarea Multiline text entry field

autofocus Indicates the control should be highlighted and ready for input when the docu-
ment loads

cols="number" The width of the text area in characters

dirname="text" Allows text directionality to be specified

disabled Disables the control so it cannot be selected

form="form id value" Associates the control with a specified form

maxlength="text" Specifies the maximum number of characters the user can enter

name="text" Supplies a unique variable name for the control

placeholder="text" Provides a short hint to help user enter the correct data

readonly Makes the control unalterable by the user

required Indicates user input is required for this control

rows="number" The height of the text area in text lines

wrap="hard|soft" Controls whether line breaks in the text input are returned in the data. hard pre-
serves line breaks; soft does not.

Element Review: Forms

Chapter 9, Forms 179

Table 9-1. Available attributes for each input type

submit reset button text password checkbox radio image file hidden

accept •

alt •

checked • •

disabled • • • • • • • • • •

maxlength • • •

name • • • • • • • • • •

readonly • • • • •

size • • •

src •

value • • • • • • • • •

HTML5-only

autocomplete • •

autofocus • • • • • • • • •

form • • • • • • • • • •

formaction • •

formenctype • •

formmethod • •

formnovalidate • •

formtarget • •

height •

list •

max

min

multiple •

pattern • •

placeholder • •

required • • • • •

step

width •

Part II, HTML Markup for structure180

Element Review: Forms

email telephone, search, url number range date, time, datetime,
datetime-local, month, week

color

accept

alt

checked

disabled • • • • • •

maxlength • •

name • • • • • •

readonly • • • •

size • •

src

value • • • • • •

HTML5-only

autocomplete • • • • • •

autofocus • • • • • •

form • • • • • •

formaction

formenctype

formmethod

formnovalidate

formtarget

height

list • • • • • •

max • • •

min • • •

multiple •

pattern • •

placeholder • •

required • • • •

step • • •

width

181

We’ve been using HTML5 elements in the past several chapters, but there
is a lot more to the HTML5 specification than new markup possibilities
(although that is an important part). HTML5 is actually a bundle of new
methods for accomplishing tasks that previously required special program-
ming or proprietary plug-in technology such as Flash or Silverlight. It offers a
standardized, open source way to put audio, video, and interactive elements
on the page as well as the ability to store data locally, work offline, take
advantage of location information, and more. With HTML5 for common
tasks, developers can rely on built-in browser capabilities and not need to
reinvent the wheel for every application.

HTML5 offers so many promising possibilities, in fact, that it has become
something of a buzzword with connotations far beyond the spec itself.
When marketers and journalists use the term “HTML5,” they are sometimes
referring to CSS3 techniques or any new web technology that isn’t Flash. In
this chapter you’ll learn what is actually included in the spec, and you can
join the rest of us in being slightly irked when the HTML5 label is applied
incorrectly. The important thing, however, is that mainstream awareness of
web standards is certainly a win and makes our job easier when communi-
cating with clients.

Of course, with any spec in development, browser support is uneven at
best. There are some features that can be used right away and some that
aren’t quite ready for prime time. But this time around, instead of waiting
for the entire spec to be “done,” browsers are implementing one feature at a
time, and developers are encouraged to begin using them (see the Tracking
Browser Support sidebar). I should also mention that the HTML5 spec is
evolving rapidly and parts are likely to have changed by the time you are
reading this. I’ll do my best to give you a good overview, and you can decide
which features to research and follow on your own.

Much of what’s new in HTML5 requires advanced web development skills,
so it is unlikely you’ll use them right away (if ever), but as always, I think it
is beneficial to everyone to have a basic familiarity with what can be done.

What’s uP, html5?

CHAPTER 10

IN THIs CHAPTER

What HTML5 is and isn't

A brief history of HTML

New elements and attributes

HTML5 APIs

Adding video and audio

The canvas element

Part II, HTML Markup for structure182

A Funny Thing Happened on the Way to XHTML 2

And “basic familiarity” is what I’m aiming at with this chapter. For more
in-depth discussions of HTML5 features, I recommend the following books:

•	 HTML5, Up and Running by Mark Pilgrim (O’Reilly Media and Google
Press)

•	 Introducing HTML5 by Bruce Lawson and Remy Sharp (New Riders)

I feel it’s only fair to warn you that this chapter is the cod liver oil of this
book. Not pleasant to get down, but good for you. An understanding of the
big picture and the context of why we do things the way we do is something
any budding web designer should have.

A Funny Thing Happened on the
Way to XHTML 2
Understanding where we’ve been provides useful context for where we are
going, so let’s kick this off with a quick history lesson. We’ll start at the very
beginning.

A “don’t blink or you’ll miss it” history of HTML
The story of HTML, from Tim Berners-Lee’s initial draft in 1991 to the
HTML5 standard in development today, is both fascinating and tumultu-
ous. Early versions of HTML (HTML+ in 1994 and HTML 2.0 in 1995)
built on Tim’s early work with the intent of making it a viable publishing
option. But when the World Wide Web (as it was adorably called back in
the day) took the world by storm, browser developers, most notably Mosaic
Netscape and later Microsoft Internet Explorer, didn’t wait for any stinkin’
standards. They gave the people what they wanted by creating a slew of
browser-specific elements for improving the look of pages on their respec-
tive browsers. This divisive one-upping is what has come to be known as
the Browser Wars. As a result, it became common in the late 1990s to create
two separate versions of a site that targeted each of the Big Two browsers.

In 1996, the newly formed W3C put a stake in the ground and released its
first Recommendation: HTML 3.2. It is a snapshot of all the HTML ele-
ments in common use at the time, and includes many presentational exten-
sions to HTML that were the result of the Netscape/IE feud and the lack of a
style sheet alternative. HTML 4.0 (1998) and HTML 4.01 (the slight revision
that superseded it in 1999) aimed to get HTML back on track by emphasiz-
ing the separation of structure and presentation and improving accessibility.
All matters of presentation were handed over to the newly minted Cascading
Style Sheets standard that was gaining support.

Tracking Browser
support
There are several nice resources out
there to help you know which HTML5
features are ready to use. Most show
support for CSS properties and
selectors as well.

 y When Can I Use… (caniuse.com)

 y HTML5 Please (html5please.com)

 y “Comparison of Layout Engines
(HTML5)” on Wikipedia (en.
wikipedia.org/wiki/Comparison_
of_layout_engines_(HTML_5))

n oT e

For a detailed history of the beginnings
of the World Wide Web and HTML,
read David Raggett’s account from his
book Raggett on HTML4 (Addison-
Wesley, 1998), available on the W3C
site (www.w3.org/People/Raggett/
book4/ch02.html).

http://www.w3.org/People/Raggett/book4/ch02.html
http://www.w3.org/People/Raggett/book4/ch02.html

A Funny Thing Happened on the Way to XHTML 2

Chapter 10, What’s Up, HTML5? 183

Enter XHTML
Around the same time that HTML 4.01 was in
development, folks at the W3C became aware that
one limited markup language wasn’t going to cut it
for describing all the sorts of information (chemi-
cal notation, mathematical equations, multimedia
presentations, financial information, and so on) that
might be shared over the Web. Their solution: XML
(eXtensible Markup Language), a metalanguage for
creating markup languages. XML was a simplifica-
tion of SGML (Standardized Generalized Markup
Language), the big kahuna of metalanguages that
Tim Berners-Lee used to create his original HTML
application. But SGML itself proved to be more com-
plex than the Web required.

The W3C had a vision of an XML-based Web with
many specialized markup languages working together—
even within a single document. Of course, to pull
that off, everyone would have to mark up documents
very carefully, strictly abiding by XML syntax, to rule
out potential confusion.

Their first step was to rewrite HTML according to
the rules of XML so that it could play well with
others. The result is XHTML (eXtensible HTML).
The first version, XHTML 1.0, is nearly identical
to HTML 4.01, sharing the same elements and
attributes, but with stricter requirements for how
markup must be done (see the XHTML Markup
Requirements sidebar).

HTML 4.01, along with XHTML 1.0, its stricter
XML-based sibling, became the cornerstone of the
web standards movement (see the sidebar The Web
Standards Project). They are still the most thorough-
ly and consistently supported standards as of this
writing (although HTML5 is quickly gaining steam).

But the W3C didn’t stop there. With a vision of
an XML-based Web in mind, they began work on
XHTML 2.0, an even bolder attempt to make things
work “right” than HTML 4.01 had been. The prob-
lem was that it was not backward-compatible with
old standards and browser behavior. The writing
and approval process dragged on for years with no
browser implementation. Without browser imple-
mentation, XHTML 2.0 was stuck.

XHTML Markup Requirements
 y Element and attribute names must be lowercase. In HTML,

element and attribute names are not case-sensitive.

 y All elements must be closed (terminated). Empty elements
are closed by adding a slash before the closing bracket (for
example,
).

 y Attribute values must be in quotation marks. Single or
double quotation marks are acceptable as long as they are
used consistently. Furthermore, there should be no extra
whitespace (character spaces or line returns) before or after
the attribute value inside the quotation marks.

 y All attributes must have explicit attribute values. XML (and
therefore XHTML) does not support attribute minimization,
the SGML practice in which certain attributes can be reduced
to just the attribute value. So, while in HTML you can write
checked to indicate that a form button be checked when
the form loads, in XHTML you need to explicitly write out
checked="checked".

 y Proper nesting of elements is strictly enforced. Some elements
have new nesting restrictions.

 y Special characters must always be represented by character
entities (e.g., & for the & symbol).

 y Use id instead of name as an identifier.

 y Scripts must be contained in a CDATA section so they will
be treated as simple text characters and not parsed as XML
markup. Here is an example of the syntax:

<script type="type/javascript">
 // <![CDATA[
 ... JavaScript goes here...
 //]]>
</script>

The Web standards Project
In 1998, at the height of the browser wars, a grassroots coalition
called the Web Standards Project (WaSP for short) began to
put pressure on browser creators (primarily Netscape and
Microsoft at the time) to start sticking to the open standards as
documented by the W3C. Not stopping there, they educated the
web developer community on the many benefits of developing
with standards. Their efforts revolutionized the way sites are
created and supported. Now browsers (even Microsoft) brag of
standards support while continuing to innovate. You can read
their mission statement, history, and current efforts on the WaSP
site (webstandards.org).

Part II, HTML Markup for structure184

A Funny Thing Happened on the Way to XHTML 2

Hello HTML5!
Meanwhile…

In 2004, members of Apple, Mozilla, and Opera formed the Web Hypertext
Application Technology Working Group (WHATWG, whatwg.org), sepa-
rate from the W3C. The goal of the WHATWG was to further the develop-
ment of HTML to meet new demands in a way that was consistent with
real-world authoring practices and browser behavior (in contrast to the
start-from-scratch ideal that XHTML 2.0 described). Their initial docu-
ments, Web Applications 1.0 and Web Forms 1.0, were rolled together into
HTML5, which is still in development under the guidance of an editor, Ian
Hickson (currently of Google).

The W3C eventually established its own HTML5 Working Group (also
led by Hickson) based on the work done by the WHATWG. As of this
writing, work on the HTML5 specification is happening in both organiza-
tions in tandem, sometimes with conflicting results. It is not yet a formal
Recommendation as of this writing, but that isn’t stopping browsers from
implementing it a little at a time.

n oT e

The WHATWG maintains what it calls the HTML “Living Standard” (meaning
they aren’t giving it a version number) at www.whatwg.org. It is nearly identical to
HTML5, but it includes a few extra elements and attributes that the W3C isn’t quite
ready to adopt, and it has a slightly different lineup of APIs.

And XHTML 2.0? At the end of 2009, the W3C officially put it out of its
misery, pulling the plug on the working group and putting its resources and
efforts into HTML5.

So that’s how we got here, and it’s a whole lot of prelude to the meat of
this chapter, which of course is the new features that HTML5 offers. I also
encourage you to read the sidebar HTML5 Fun Facts for more juicy informa-
tion on the specification itself. In this section, I’ll introduce what’s new in
HTML5, including:

•	 A new DOCTYPE

•	 New elements and attributes

•	 Obsolete 4.01 elements

•	 APIs

HTML5 aims to make HTML
more useful for creating
web applications.

http://www.whatwg.org

In the Markup Department

Chapter 10, What’s Up, HTML5? 185

HTML5 Fun Facts
HTML5 both builds on previous versions of HTML and introduces
some significant departures. Here are some interesting tidbits
about the HTML5 specification itself.

 y HTML5 is based on HTML 4.01 Strict, the version of HTML
that did not include any presentation-based or other
deprecated elements and attributes. That means the vast
majority of HTML5 is made up of the same elements we’ve
been using for years, and browsers know what to do with
them.

 y HTML5 does not use a DTD (Document Type Definition),
which is a document that defines all of the elements and
attributes in a markup language. It is the way you document
a language in SGML, and if you’ll remember, HTML was
originally crafted according to the rules of SGML. HTML 4.01
was defined by three separate DTDs: Transitional (including
legacy elements that were marked as “deprecated,” or soon
to be obsolete), Strict (deprecated features stripped out,
as noted earlier), and Frameset (for documents broken
into individually scrolling frames, a technique that is now
considered obsolete).

 y HTML5 is the first HTML specification that includes detailed
instructions for how browsers should handle malformed
and legacy markup. It bases the instructions on legacy
browser behavior, but for once, there is a standard protocol
for browser makers to follow when browsers encounter
incorrect or non-standard markup.

 y HTML5 can also be written according to the stricter syntax
of XML (called the XML serialization of HTML5). Some
developers have come to prefer the tidiness of well-formed
XHTML (lowercase element names, quoted attribute values,
closing all elements, and so on), so that way of writing is still
an option, although not required. In edge cases, an HTML5
document may be required to be served as XML in order to
work with other XML applications, in which case it can use
the XML syntax and be ready to go.

 y In addition to markup, HTML5 defines a number of APIs
(Application Programming Interface). APIs make it easier to
communicate with web-based applications. They also move
some common processes (such as audio and video players)
into native browser functionality.

In the Markup Department
We’ll start with a look at the markup aspects of HTML5, and then we’ll
move on to the APIs.

A minimal DOCTYPE
As we saw in Chapter 4, HTML documents should begin with a Document
Type Declaration (DOCTYPE declaration) that identifies which version of
HTML the document follows. The HTML5 declaration is short and sweet:

<! DOCTYPE html>

Compare that to a declaration for a Strict HTML 4.01 document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/HTML4.01/strict.dtd">

Why so complicated? In HTML 4.01 and XHTML 1.0 and 1.1, the declara-
tion must point to the public DTD (Document Type Definition), a document
that defines all of the elements in a markup language as well as the rules for
using them. HTML 4.01 was defined by three separate DTDs: Transitional
(including legacy elements such as font and attributes such as align that
were marked as “deprecated,” or soon to be obsolete), Strict (deprecated fea-
tures stripped out), and Frameset (for documents broken into individually
scrolling frames, a technique that is now considered obsolete). HTML5 does
not have a DTD, which is why we have the simple DOCTYPE declaration.

Part II, HTML Markup for structure186

In the Markup Department

DTDs are a remnant of SGML and proved to be less helpful on the Web than
originally thought, so the authors of HTML5 simply didn’t use one.

Validators—software that checks that all the markup in a document is
correct (see note)—use the DOCTYPE declaration to make sure the docu-
ment abides by the rules of the specification it claims to follow. The sidebar
HTML DOCTYPES lists all declarations in common use, should you need
to write documents in HTML 4.01 or XHTML 1.0.

HTML DOCTYPEs
The following lists all of the DOCTYPE declarations in common use.

HTML5

<!DOCTYPE html>

HTML 4.01 Transitional
The Transitional DTD includes deprecated elements and attributes:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/HTML4.01/loose.dtd">

HTML 4.01 Strict
The Strict DTD omits all deprecated elements and attributes:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/HTML4.01/strict.dtd">

HTML 4.01 Frameset
If your document contains frames—that is, it uses frameset instead of body for its
content—then identify the Frameset DTD:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/HTML4.01/frameset.dtd">

XHTML 1.0 Strict
The same as HTML 4.01 Strict, but reformulated according to the syntax rules of XML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

XHTML 1.0 Transitional
The same as HTML 4.01 Transitional, but reformulated according to the syntax rules of
XML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Frameset
The same as HTML 4.01 Frameset, but reformulated according to the syntax rules of
XML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

n oT e

To check whether your HTML docu-
ment is valid, use the online valida-
tor at the W3C (validator.w3.org).
An HTML5-specific validator is also
available at html5.validator.nu. There
is also a validator built into Adobe
Dreamweaver that allows you to check
your document against various specs as
you work.

In the Markup Department

Chapter 10, What’s Up, HTML5? 187

Elements and attributes
HTML5 introduced a number of new elements. You’ll find them sprinkled
throughout this book, but Table 10-1 lists them all in one place.

Table 10-1. New elements in HTML5

article

aside

audio

bdi

canvas

command

datalist

details

embed

figcaption

figure

footer

header

hgroup

keygen

mark

meter

nav

output

progress

rp

rt

ruby

section

source

summary

time

track

video

wbr

New form input types
We covered the new form input control types in Chapter 9, but here they
are at a glance: color, date, datetime, datetime-local, email, month, number,
range, search, tel, time, url, and week.

New global attributes
Global attributes are attributes that can be applied to any element. The
number of global attributes was expanded in HTML5, and many of them are
brand new (as noted in Table 10-2). The W3C is still adding and removing
attributes as of this writing, so it’s worth checking in with the spec for the
latest (dev.w3.org/html5/spec/global-attributes.html#global-attributes).

Table 10-2. Global attributes in HTML5
Attribute Values Description

accesskey Single text character Assigns an access key (shortcut key command) to the link. Access
keys are also used for form fields. Users may access the element
by hitting Alt-<key> (PC) or Ctrl-<key> (Mac).

aria-* One of the standardized state or
property keywords in WAI-ARIA
(www.w3.org/TR/wai-aria/states_
and_properties)

WAI-ARIA (Accessibile Rich Internet Applications) defines a way
to make web content and applications more accessible to users
with assistive devices. HTML5 allows any of the ARIA properties
and roles to be added to elements. For example, a div used for a
pop-up menu could include the attribute aria-haspopup to make
that property clear to a user without a visual browser. See also
the related role global attribute.

class Text string Assigns one or more classification names to the element.

contenteditable true | false Indicates the user can edit the element. This attri-
bute is already well supported in current browser versions.

n oT e

For a detailed list of all the ways
HTML5 differs from HTML 4.01, see
the W3C official document at www.
w3.org/TR/html5-diff/.

Part II, HTML Markup for structure188

In the Markup Department

Table 10-2. Global attributes in HTML5

Attribute Values Description

contextmenu id of the menu element Specifies a context menu that applies to the element.
The context menu must be requested by the user, for example, by
a right-click.

data-* Text string or numerical data Enables authors to create custom data-related attri-
butes (the “*” is a symbol that means “anything”), for example,
data-length, data-duration, data-speed, etc. so that the data can
be used by a custom application or scripts.

dir ltr | rtl Specifies the direction of the element (“left to right” or “right to
left”).

draggable true | false A true value indicates the element is draggable,
meaning it can be moved my clicking and holding on it, then
moving it to a new position in the window.

dropzone copy | link | move |
s:text/plain | f:file-type
(for example, f:image/jpg)

 Indicates the element can accept dragged and
dropped text or file data. The values are a space-separated list
that includes what type of data it accepts (s:text/plain for text
strings; f:file-type for file types) and a keyword that indicates
what to do with the dropped content: copy results in a copy of the
dragged data; move moves it to the new location; and link results
in a link to the original data.

hidden No value for HTML documents

In XHTML, set a value
hidden="hidden"

 Prevents the element and its descendants from being
rendered in the user agent (browser). Any scripts or form controls
in hidden sections will still execute, but they will not be presented
to the user.

id Text string (may not begin with
an number)

Assigns a unique identifying name to the element.

lang Two-letter language code (see
www.loc.gov/standards/iso639-2/
php/code_list.php)

Specifies the language for the element by its language code.

role One of the standard role key-
words in WAI-ARIA (see www.
w3.org/TR/wai-aria/roles)

 Assigns one of the standardized WAI-ARIA roles to
an element to make its purpose clearer to users with disabilities.
For example, a div with contents that will display as a pop-up
menu on visual browsers could be marked with role="menu" for
clarity on screen readers.

spellcheck true | false Indicates the element is to have its spelling and
grammar checked.

style Semicolon-separated list of style
rules (property: value pairs)

Associates style information with an element. For example:

<h1 style="color: red; border: 1px solid">Heading</h1>

tabindex Number Specifies the position of the current element in the tabbing order
for the current document. The value must be between 0 and
32,767. It is used for tabbing through links on a page or fields in
a form and is useful for assistive browsing devices. A value of –1
is allowable to remove elements from the tabbing flow and make
them focusable only by JavaScript.

title Text string Provides a title or advisory information about the element, typi-
cally displayed as a tooltip.

Meet the APIs

Chapter 10, What’s Up, HTML5? 189

Obsolete HTML 4.01 Markup
HTML5 also declared a number of elements in HTML 4.01 to be “obsolete”
because they are presentational, antiquated, or poorly supported (Table
10-3). If you use them, browsers will support them, but I strongly recom-
mend leaving them in the dust.

Table 10-3. HTML 4 elements that are now obsolete in HTML5

acronym

applet

basefont

big

center

dir

font

frame

frameset

isindex

noframes

strike

tt

Are you still with me? I know, this stuff gets pretty dry. That’s why I’ve
included Figure 10-1. It has nothing at all to do with HTML5, but I thought
we could all use a little breather before taking on APIs.

Figure 10-1. This adorable baby red panda has nothing to do with HTML5. (Photo by
Tara Menne)

Meet the APIs
HTML specifications prior to HTML5 included only documentation of the
elements, attributes, and values permitted in the language. That’s fine for
simple text documents, but the creators of HTML5 had their minds set on

Part II, HTML Markup for structure190

Meet the APIs

making it easier to create web-based applications that require scripting and
programming. For that reason, HTML5 also defines a number of new APIs
for making it easier to communicate with an application.

An API (Application Programming Interface) is a documented set of com-
mands, data names, and so on, that lets one software application commu-
nicate with another. For example, the developers of Twitter documented
the names of each data type (users, tweets, timestamps, and so on) and the
methods for accessing them in an API document (dev.twitter.com/docs) that
lets other developers include Twitter feeds and elements in their programs.
That is why there are so many Twitter programs and widgets available.
Amazon.com also opens up its product data via an API. In fact, publishers
of all ilks are recognizing the power of having their content available via an
API. You could say that APIs are hot right now.

But let’s bring it back to HTML5, which includes APIs for tasks that tradi-
tionally required proprietary plug-ins (like Flash) or custom programming.
The idea is that if browsers offer those features natively—with standardized
sets of hooks for accessing them—developers can do all sorts of nifty things
and count on it working in all browsers, just as we count on the ability to
embed an image on a page today. Of course, we have a way to go before
there is ubiquitous support of these cutting-edge features, but we’re getting
there steadily. Some APIs have a markup component, such as embedding
multimedia with the new HTML5 video and audio elements. Others happen
entirely behind the scenes with JavaScript or server-side components, such
as creating web applications that work even when there is no Internet con-
nection (Offline Web Application API).

The W3C and WHATWG are working on lots and lots of APIs for use with
web applications, all in varying stages of completion and implementation.
Most have their own specifications, separate from the HTML5 spec itself,
but they are generally included under the wide HTML5 umbrella that cov-
ers web-based applications. HTML5 includes specifications for these APIs:

Media Player API
For controlling audio and video players embedded on a web page, used
with the new video and audio elements. We will take a closer look at
audio and video later in this chapter.

Session History API
Exposes the browser history for better control over the Back button.

Offline Web Application API
Makes it possible for a web application to work even when there is no
Internet connection. It does it by including a manifest document that
lists all of the files and resources that should be downloaded into the
browser’s cache in order for the application to work. When a connection
is available, it checks to see whether any of the documents have changed,
then updates those documents.

n oT e

For a list of all the APIs, see the arti-
cle “HTML Landscape Overview” by
Erik Wilde (dret.typepad.com/dretblog/
html5-api-overview.html). The W3C
lists all the documents they maintain,
many of which are APIs, at www.
w3.org/TR/tr-title-all.

https://dev.twitter.com/docs

Meet the APIs

Chapter 10, What’s Up, HTML5? 191

Editing API
Provides a set of commands that could be used to create in-browser text
editors, allowing users to insert and delete text, format text as bold,
italic, or as a hypertext link, and more. In addition, there is a new con-
tenteditable attribute that allows any content element to be editable
right on the page.

Drag and Drop API
Adds the ability to drag a text selection or file to a target area on the page
or another web page. The draggable attribute indicates the element can
be selected and dragged. The dropzone attribute is used on the target area
and defines what type of content it can accept (text or file type) and what
to do with it when it gets there (copy, link, move).

The following are just a handful of the APIs in development at the W3C with
specifications of their own (outside HTML5):

Canvas API
The canvas element adds a dynamic, two-dimensional drawing space to
a page. We’ll take a look at it at the end of this chapter.

Web Storage API
Allows data to be stored in the browser’s cache so that an application
can use it later. Traditionally, that has been done with “cookies,” but the
Web Storage API allows more data to be stored. It also controls whether
the data is limited to one session (sessionStorage: when the window is
closed, the data is cleared) or based on domain (localStorage: all open
windows pointed to that domain have access to the data).

Geolocation API
Lets users share their geographical location (longitude and latitude) so
that it is accessible to scripts in a web application. This allows the app to
provide location-aware features such as suggesting a nearby restaurant or
finding other users in your area.

Web Workers API
Provides a way to run computationally complicated scripts in the back-
ground. This allows the browser to keep the web page interface quick
and responsive to user actions while working on processor-intensive
scripts at the same time. The Web Workers API is part of the HTML5
spec at the WHATWG, but at the W3C, it’s been moved into a separate
document.

Web Sockets API
Creates a “socket,” which is an open connection between the browser
client and the server. This allows information to flow between the cli-
ent and the server in real time, with no lags for the traditional HTTP
requests. It is useful for multiplayer games, chat, or data streams that
update constantly, such as sports or stock tickers or social media streams.

n oT e

You can think of a web socket as
an ongoing telephone call between the
browser and server compared to the
walkie-talkie, one-at-a-time style of
traditional browser/server communica-
tion. (A hat tip to Jen Simmons for this
analogy.)

Part II, HTML Markup for structure192

Video and Audio

Some APIs have correlating HTML elements, such as the audio and video
elements for embedding media players on a page, and the canvas element for
adding a dynamic drawing area. In the following sections, we’ll take a brief
look at how those elements are put to use.

Video and Audio
In the earliest days of the World Wide Web (I know, I was there), it was
possible to add a MIDI file to a web page for a little beep-boopy soundtrack
(think early video games). It wasn’t long before better options came along,
including RealMedia and Windows Media, that allowed all sorts of audio
and video formats to be embedded in a web page. In the end, Flash became
the de facto embedded multimedia player thanks in part to its use by
YouTube and similar video services.

What all of these technologies have in common is that they require third-
party, proprietary plug-ins to be downloaded and installed in order to play
the media files. Until recently, browsers did not have built-in capabilities for
handling sound or video, so the plug-ins filled in the gap. With the develop-
ment of the Web as an open standards platform, it seemed like time to make
multimedia support part of browsers’ out-of-the-box capabilities. Enter the
new audio and video elements and their respective APIs.

The good news and the bad news
The good news is that the audio and video elements are well supported in
modern browsers, including IE 9+, Safari 3+, Chrome, Opera, and Firefox
3.5+ for the desktop and iOS Safari 4+, Android 2.3+, and Opera Mobile
(however, not Opera Mini).

But lest you envision a perfect world where all browsers are supporting
audio and video in perfect harmony, I am afraid that it is not that simple.
Although they have all lined up on the markup and JavaScript for embed-
ding and controlling media players, unfortunately they have not agreed on
which formats to support. Let’s take a brief journey through the land of
media file formats. If you want to add audio or video to your page, this stuff
is important to understand.

How media formats work
When you prepare audio or video content for web delivery, there are two for-
mat decisions to make. The first is how the media is encoded (the algorithms
used to convert the source to 1s and 0s and how they are compressed). The
method used for encoding is called the codec, which is short for “code/
decode” or “compress/decompress.” There are a bazillion codecs out there
(that’s an estimate). Some probably sound familiar, like MP3; others might

Farewell Flash?
Apple’s announcement that it would
not support Flash on its iOS devices,
ever, gave HTML5 an enormous
push forward and eventually led to
Adobe stopping development on its
mobile Flash products. Not long after,
Microsoft announced that it was
discontinuing its Silverlight media
player in lieu of HTML5 alternatives.
As of this writing, HTML5 is a long
way from being able to reproduce
the vast features and functionality of
Flash, but it’s getting there gradually.
That means we are likely to see Flash
and Silverlight players on the desktop
for years to come, but the trajectory
away from plug-ins and toward web
standards technologies seems clear.

Video and Audio

Chapter 10, What’s Up, HTML5? 193

sound new, such as H.264, Vorbis, Theora, VP8, and AAC. Fortunately,
only a few are appropriate for the Web, and we’ll review them in a moment.

Second, you need to choose the container format for the media…you can
think of it as a ZIP file that holds the compressed media and its metadata
together in a package. Usually a container format can hold more than one
codec type, and the full story is complicated. Because space is limited in
this chapter, I’m going to cut to the chase and introduce the most common
container/codec combinations for the Web. If you are going to add video
or audio to your site, I encourage you to get more familiar with all of these
formats. The books in the For Further Reading: HTML5 Media sidebar are
a great first step.

Meet the video formats
For video, the most common options are:

•	 Ogg container + Theora video codec + Vorbis audio codec. This is typi-
cally called “Ogg Theora,” and the file should have a .ogv suffix. All of
the codecs and the container in this option are open source and unen-
cumbered by patents or royalty restrictions, which makes them ideal for
web distribution, but some say the quality is inferior to other options.

•	 MPEG-4 container + H.264 video codec + AAC audio codec. This com-
bination is generally referred to as “MPEG-4,” and it takes the .mp4 or
.m4v file suffix. H.264 is a high-quality and flexible video codec, but it
is patented and must be licensed for a fee. The royalty requirement has
been a deal-breaker for browsers that refuse to support it.

•	 WebM container + VP8 video codec + Vorbis audio codec. “WebM”
is the newest container format and uses the .webm file extension. It is
designed to work with VP8 and Vorbis exclusively, and has the advan-
tage of being open source and royalty-free.

Of course, the problem that I referred to earlier is that browser makers have
not agreed on a single format to support. Some go with open source, royalty-
free options like Ogg Theora or WebM. Others are sticking with the better
quality of H.264 despite the royalty requirements. What that means is that
we web developers need to make multiple versions of videos to ensure sup-
port across all browsers. Table 10-4 lists which browsers support the various
video options.

Table 10-4. Video support in current browsers (as of mid-2012)

Format Type IE Chrome Firefox safari Opera Mobile Mobile safari Android

Ogg Theora video/ogg – 5.0+ 3.5+ – 10.5+ – –

MP4/H.264 video/mp4 9.0+ – – 3.1+ – 3.0+ 2.0+

WebM video/webm 9.0+ 6.0+ 4.0+ – 11+ – 2.3.3+

For Further
Reading: HTML5
Media
I recommend these books when you
are ready to learn more about HTML5
media:

 y HTML5 Media, by Shelley
Powers (O’Reilly Media)

 y HTML5, Up and Running, by
Mark Pilgrim (O’Reilly Media)
includes a helpful section on
HTML5 video.

 y The Definitive Guide to HTML5
Video, by Sylvia Pfeiffer (Apress)

Part II, HTML Markup for structure194

Video and Audio

Meet the audio formats
The landscape looks similar for audio formats: several to choose from, but
no format that is supported by all browsers (Table 10-5).

•	 MP3. The MP3 format is a codec and container in one, with the file
extension.mp3. It has become ubiquitous as a music download format.
The MP3 (short for MPEG-1 Audio Layer 3) is patented and requires
license fees paid by hardware and software companies (not media cre-
ators).

•	 WAV. The WAV format (.wav) is also a codec and container in one.

•	 Ogg container + Vorbis audio codec. This is usually referred to as “Ogg
Vorbis” and is served with the .ogg or .oga file extension.

•	 MPEG 4 container + AAC audio codec. “MPEG4 audio” (.m4a) is less
common than MP3.

•	 WebM container + Vorbis audio codec. The WebM (.webm) format can
also contain audio only.

Table 10-5. Audio support in current browsers (as of 2012)

Format Type IE Chrome Firefox safari Opera Mobile Mobile safari Android

MP3 audio/mpeg 9.0+ 5.0+ – 4+ – 3.0+ 2.0+

WAV audio/wav or
audio/wave

– 5.0+ 3.5+ 4+ 10.5+ 3.0+ 2.0+

Ogg Vorbis audio/ogg – 5.0+ 3.5+ – 10.5+ – 2.0+

MPEG-4/AAC audio/mp4 9.0+ 5.0+ – 4+ – 3.0+ 2.0+

WebM audio/webm 9.0+ 6.0+ 4.0+ – 11+ – 2.3.3+

Video and Audio Encoding Tools
There are scores of options for editing and encoding video and
audio files, so I can’t cover them all here, but the following tools
are free and get the job done.

Video conversion
 y Miro Video Converter (www.mirovideoconverter.com) is a

free tool that converts any video to H.264, Ogg Theora, or
WebM format optimized for mobile devices or the desktop
with a simple drag-and-drop interface. It is available for OS X
and Windows.

 y Handbrake (handbrake.fr) is a popular open source tool for
getting better control over H.264 settings. It is available for
Windows, OS X, and Linux.

 y Firefogg (firefogg.org) is an extension to Firefox for

converting video to the Ogg Theora format. Simply install the
Firefogg extension to Firefox 3.5+, then visit the Firefogg site
and convert video using their online interface.

Audio conversion
 y MP3/WMA/Ogg Converter (www.freemp3wmaconverter.

com) is a free tool that converts the following audio formats:
MP3, WAV, WMA, OGG, AAC, and more. Sorry, Mac users; it is
Windows only.

 y On the Mac, try Max, an open source audio converter
available at sbooth.org/Max/. Audacity (audacity.sourceforge.
net/) also has some basic conversion tools in addition to
being a recording tool.

http://www.mirovideoconverter.com
http://www.freemp3wmaconverter.com
http://www.freemp3wmaconverter.com
http://audacity.sourceforge.net/
http://audacity.sourceforge.net/

Video and Audio

Chapter 10, What’s Up, HTML5? 195

Adding a video to a page
I guess it’s about time we got to the markup for adding a video to a web page
(this is the HTML part of the book, after all). Let’s start with an example that
assumes you are designing for an environment where you know exactly what
browser your user will be using. When this is the case, you can provide only
one video format using the src attribute in the video tag (just as you do for
an img). Figure 10-2 shows a movie with the default player in the Chrome
browser. We’ll look at the other attributes after the example.

<video src="highlight_reel.mp4" width="640" height="480"
poster="highlight_still.jpg" controls autoplay>
</video>

Figure 10-2. An embedded movie using the video element (shown in Chrome on Mac).

There are some juicy attributes in that example worth looking at in detail.

width="pixel measurement"
height="pixel measurement"

Specifies the size of the box the embedded media player takes up on
the screen. Generally, it is best to set the dimensions to exactly match
the pixel dimensions of the movie. The movie will resize to match the
dimensions set here.

poster="url of image"
Provides the location of a still image to use in place of the video before
it plays.

controls
Adding the controls attribute prompts the browser to display its built-in
media controls, generally a play/pause button, a “seeker” that lets you
move to a position within the video, and volume controls. It is possible to

wa R n i n G

iOS3 devices will not play a video that
includes the poster attribute, so avoid
using it if you need to support old
iPhones and iPads.

<video>...</video>
Adds a video player to the page

Part II, HTML Markup for structure196

Video and Audio

create your own custom player interface using CSS and JavaScript if you
want more consistency across browsers. How to do that is beyond the
scope of this chapter, but is explained in the resources listed in the For
Further Reading: HTML5 Media sidebar. In many instances, the default
controls are just fine.

autoplay
Makes the video start playing automatically once it has downloaded
enough of the media file to play through without stopping. In general,
use of autoplay should be avoided in favor of letting the user decide
when the video should start.

In addition, the video (and audio) element can use the loop attribute to make
the video play again once it has finished (ad infinitum), muted for playing
the video track without the audio, mediagroup for making a video element
part of a group of related media elements (such as a video and a synced sign
language translation), and preload for suggesting to the browser whether
the video data should be fetched as soon as the page loads (preload="auto")
or wait until the user presses the play button (preload="none"). Setting
preload="metadata" loads information about the media file, but not the
media itself. A device can decide how to best handle the auto setting; for
example, a browser in a smartphone may protect a user’s data usage by not
preloading media, even when it is set to auto.

Video for all!
But wait a minute! We already know that one video format isn’t going to
cut it in the real world. At the very least, you need to make two versions of
your video: Ogg Theora and MPEG-4 (H.264 video). Some developers prefer
WebM instead of Ogg because browser support is nearly as good and the
files are smaller. As a fallback for users with browsers that don’t support
HTML5 video, you can embed a Flash player on the page or use a service
like YouTube or Vimeo, in which case you let them handle the conversion,
and you just copy the embed code.

In the markup, a series of source elements inside the video element point
to each video file. Browsers look down the list until they find one they sup-
port and download only that version. The Flash fallback gets added with
the traditional object and embed elements, so if a browser can’t make head
or tails of video and source, chances are high it can play it in Flash. Finally,
to ensure accessibility for all, it is highly recommended that you add some
simple links to download the videos so they can be played in whatever media
player is available, should all of the above fail.

Without further ado, here is one (very thorough) code example for embed-
ding video that should serve all users, including those on mobile devices.
You may choose not to provide all these formats, so adapt it accordingly.

object and embed
The object element is the generic
way to embed media such as a
movie, Flash movie, applet, even
images in a web page. It contains
a number of param (for parameters)
elements that provide instructions
or resources that the object needs
to display. You can also put fallback
content inside the object element
that is used if the media is not
supported. The attributes and
parameters vary by object type and
are sometimes specific to the third-
party plugin displaying the media.

The object's poor cousin, embed, also
embeds media on web pages. It has
been a non-standard, but widely
supported, element until it was finally
made official in HTML5. Some media
require the use of embed, which is
often used as a fallback in an object
element to appease all browsers.

You can see an example of the
object and param elements in the
“Video for Everybody” code example
on the following page.

Video and Audio

Chapter 10, What’s Up, HTML5? 197

The following example is based on the code in Kroc Camen’s article “Video
for Everybody” (camendesign.com/code/video_for_everybody). I highly rec-
ommend checking that page for updates, instructions for modifying the
code, and many more technical details. We’ll look at each part following
the example.

<video id="yourmovieid" width="640" height="360" poster="yourmovie_
still.jpg" controls preload="auto">
 <source src="yourmovie-baseline.mp4" type='video/mp4;
codecs="avc1.42E01E, mp4a.40.2"'>
 <source src="yourmovie.webm" type='video/webm; codecs="VP8,
vorbis"'>
 <source src="yourmovie.ogv" type='video/ogg; codecs="theora,
vorbis"'>
<!--Flash fallback -->
 <object width="640" height="360" type="application/x-shockwave-
flash" data="your_flash_player.swf">
 <param name="movie" value="your_flash_player.swf">
 <param name="flashvars" value="controlbar=over&image=poster.
jpg&file=yourmovie-main.mp4">
 <img src="poster.jpg" width="640" height="360" alt=""
 title="No video playback capabilities, please download the video
below">
 </object>
</video>
<p>Download the Highlights Reel:</p>

 MPEG-4 format
 Ogg Theora format

Each source element contains the location of the media file (src) and infor-
mation about its file type (type). In addition to listing the MIME type of the
file container (e.g., video/ogg), it is helpful to also list the codecs that were
used (see the note). This is especially important for MPEG-4 video because
the H.264 codec has a number of different profiles, such as baseline (used by
mobile devices), main (used by desktop Safari and IE9+), extended, and high
(these two are generally not used for web video). Each profile has its own
profile ID, as you see in the first source element in the example.

Technically, the order of the source elements doesn’t matter, but to com-
pensate for a bug on early iPads, it is best to put the baseline MPEG-4 first
in the list. iPads running iOS 3 won’t find it if it’s further down, and it won’t
hurt any other browsers.

After the source elements, an object element is used to embed a Flash player
that will play the MPEG-4 video for browsers that have the Flash plug-in.
There are many Flash players available, but Kroc Camen (of “Video for
Everybody” fame) recommends JW Player, which is easy to install (just put
a JavaScript .js file and the Flash .swf file on your server). Download the JW
Player and instructions for installing and configuring it at www.longtailvideo.
com/players/jw-flv-player/. If you use the JW Player, replace your_flash_play-
er.swf in the example with player.swf.

n oT e

If you look carefully, you’ll see that
single quotation marks (') were used
to enclose the long string of values for
the type attribute in the source element.
That is because the codecs must be
enclosed in double quotation marks, so
the whole attribute requires a different
quotation mark type.

n oT e

In this example, the MPEG-4 video is
provided at “baseline” quality in order
to play on iOS 3 devices. If iOS3 is
obsolete when you are reading this or
does not appear in your traffic data, you
can provide the higher-quality “main”
profile version instead:

<source src="yourmovie-
main.mp4" type='video/mp4;
codecs="avc1.4D401E, mp4a.40.2"'>

file:///Volumes/Data_monograph/R6000%20Learning%20Web%20Design/Received/2012-06-14/B2-final-MS_part1/view-source:http://camendesign.com/code/video_for_everybody/poster.jpg
http://www.longtailvideo.com/players/jw-flv-player/
http://www.longtailvideo.com/players/jw-flv-player/

Part II, HTML Markup for structure198

Canvas

It is important to note that the Flash fallback is for browsers that do not
recognize the video element. If a browser does support video but simply
does not support one of the media file formats, it will not display the Flash
version. It shows nothing. That’s why it is a good idea to have direct links (a)
to the video options outside the video element for maximum accessibility.

Finally, if you want the video to start playing automatically, add the auto-
play attribute to the video element and autostart=true to the Flash param
element like this:

<video src="movie.mp4" width="640" height="480" autoplay>

<param name="flashvars" value="autostart=true&controlbar=over&
image=poster.jpg& file=yourmovie-main.mp4">

Keep in mind that videos will not play automatically on iOS devices, even
if you set it in the code. Apple disables autoplay on its mobile devices to
prevent unintended data transfer.

Adding audio to a page
If you’ve wrapped your head around the video markup example, you already
know how to add audio to a page. The audio element uses the same attri-
butes as the video element, with the exception of width, height, and poster
(because there is nothing to display). Just like the video element, you can
provide a stack of audio format options using the source element, as shown
in the example here.

<audio id="soundtrack" controls preload="auto">
 <source src="soundtrack.mp3" type="audio/mp3">
 <source src="soundtrack.ogg" type="audio/ogg">
 <source src="soundtrack.webm" type="audio/webm">
</audio>
<p>Download the Soundtrack song:</p>

 MP3
 Ogg Vorbis

If you want to be evil, you could embed audio in a page, set it to play auto-
matically and then loop, and not provide any controls to stop it like this:

<audio src="soundtrack.mp3" autoplay loop></audio>

But you would never, ever do something like that, right? Right?! Of course
you wouldn’t.

Canvas
Another cool, “Look Ma, no plug-ins!” addition in HTML5 is the canvas
element and the associated Canvas API. The canvas element creates an area
on a web page that you can draw on using a set of JavaScript functions for
creating lines, shapes, fills, text, animations, and so on. You could use it to

wa R n i n G

If your server is not configured to prop-
erly report the video type (its MIME
type) of your video and audio files,
some browsers will not play them. The
MIME types for each format are listed
in the “Type” column in Tables 10-4
and 10-5. So be sure to notify your serv-
er administrator or hosting company’s
technical help if you intend to serve
media files and get the MIME types set
up correctly.

wa R n i n G

Firefox versions 7 and earlier do not
support the loop attribute.

<audio>...</audio>
Adds an audio file to the page

Canvas

Chapter 10, What’s Up, HTML5? 199

display an illustration, but what gives the canvas element so much potential
(and has all the web development world so delighted) is that it’s all gener-
ated with scripting. That means it is dynamic and can draw things on the fly
and respond to user input. This makes it a nifty platform for creating ani-
mations, games, and even whole applications…all using the native browser
behavior and without proprietary plug-ins like Flash.

The good news is that Canvas is supported by every current browser
as of this writing, with the exception of Internet Explorer 8 and earlier.
Fortunately, the FlashCanvas JavaScript library (flashcanvas.net) can add
Canvas support to those browsers using the Flash drawing API. So Canvas
is definitely ready for prime time.

Figure 10-3 shows a few examples of the canvas element used to create
games, drawing programs, an interactive molecule structure tool, and an
asteroid animation. You can find more examples at Canvasdemos.com.

ie.microsoft.com/testdrive/Performance/AsteroidBelt/# www.rel�nd.com/game/magician.html

alteredqualia.com/canvasmol/muro.deviantart.com

Figure 10-3. A few examples of the canvas element used for games, animations, and applications.

Mastering the canvas element is more than we can take on here, particularly
without any JavaScript experience under our belts, but I will give you a taste
of what it is like to draw with JavaScript. That should give you a good idea
of how it works, and also a new appreciation for the complexity of some of
those examples.

Part II, HTML Markup for structure200

Canvas

The canvas element
You add a canvas space to the page with the canvas element and specify the
dimensions with the width and height attributes. And that’s really all there
is to the markup. For browsers that don’t support the canvas element, you
can provide some fallback content (a message, image, or whatever seems
appropriate) inside the tags.

<canvas width="600" height="400" id="my_first_canvas">
 Your browser does not support HTML5 canvas. Try using Chrome,
Firefox, Safari or Internet Explorer 9.
</canvas>

The markup just clears a space on which the drawing will happen.

Drawing with Javascript
The Canvas API includes functions for creating basic shapes (such as
strokeRect() for drawing a rectangular outline and beginPath() for starting
a line drawing) and moving things around (such as rotate() and scale()),
plus attributes for applying styles (for example, lineWidth, strokeStyle,
fillStyle, and font).

The following example was created by my O’Reilly Media colleague Sanders
Kleinfeld for his book HTML5 for Publishers (O’Reilly). He was kind enough
to allow me to use it in this book.

Figure 10-4 shows the simple smiley face we’ll be creating with the Canvas
API.

And here is the script that created it. Don’t worry that you don’t know any
JavaScript yet. Just skim through the script and pay attention to the little
notes. I’ll also describe some of the functions in use at the end. I bet you’ll
get the gist of it just fine.

<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();
}

function canvasApp(){
var theCanvas = document.getElementById('my_first_canvas');
var my_canvas = theCanvas.getContext('2d');
my_canvas.strokeRect(0,0,200,225)
 // to start, draw a border around the canvas

 //draw face
my_canvas.beginPath();
my_canvas.arc(100, 100, 75, (Math.PI/180)*0, (Math.PI/180)*360, false);
 // circle dimensions
my_canvas.strokeStyle = "black"; // circle outline is black
my_canvas.lineWidth = 3; // outline is three pixels wide
my_canvas.fillStyle = "yellow"; // fill circle with yellow
my_canvas.stroke(); // draw circle
my_canvas.fill(); // fill in circle

Figure 10-4. The finished product of
our “Hello Canvas” canvas example.
See the original at examples.oreilly.
com/0636920022473/my_first_canvas/
my_first_canvas.html.

<canvas>...</canvas>
Adds a 2-D dynamic drawing area

Canvas

Chapter 10, What’s Up, HTML5? 201

my_canvas.closePath();

 // now, draw left eye
my_canvas.fillStyle = "black"; // switch to black for the fill
my_canvas.beginPath();
my_canvas.arc(65, 70, 10, (Math.PI/180)*0, (Math.PI/180)*360, false);
 // circle dimensions
my_canvas.stroke(); // draw circle
my_canvas.fill(); // fill in circle
my_canvas.closePath();

 // now, draw right eye
my_canvas.beginPath();
my_canvas.arc(135, 70, 10, (Math.PI/180)*0, (Math.PI/180)*360, false);
 // circle dimensions
my_canvas.stroke(); // draw circle
my_canvas.fill(); // fill in circle
my_canvas.closePath();

 // draw smile
my_canvas.lineWidth = 6; // switch to six pixels wide for outline
my_canvas.beginPath();
my_canvas.arc(99, 120, 35, (Math.PI/180)*0, (Math.PI/180)*-180, false);
 // semicircle dimensions
my_canvas.stroke();
my_canvas.closePath();

 // Smiley Speaks!
my_canvas.fillStyle = "black"; // switch to black for text fill
my_canvas.font = '20px _sans'; // use 20 pixel sans serif font
my_canvas.fillText ("Hello Canvas!", 45, 200); // write text
}
</script>

Finally, here is a little more information on the Canvas API functions used
in the example:

strokeRect(x1, y1, x2, y2)
Draws a rectangular outline from the point (x1, y1) to (x2, y2). By
default, the origin of the Canvas (0,0) is the top-left corner, and x and y
coordinates are measured to the right and down.

beginPath()
Starts a line drawing.

closePath()
Ends a line drawing that was started with beginPath().

arc(x, y, arc_radius, angle_radians_beg, angle_radians_end)
Draws an arc where (x,y) is the center of the circle, arc_radius is the
length of the radius of the circle, and angle_radians_beg and _end indi-
cate the beginning and end of the arc angle.

stroke()
Draws the line defined by the path. If you don’t include this, the path
won’t appear on the canvas.

Part II, HTML Markup for structure202

Final Word

fill()
Fills in the path specified with beginPath() and endPath().

fillText(your_text, x1, y1)
Adds text to the canvas starting at the (x,y) coordinate specified.

In addition, the following attributes were used to specify colors and styles:

lineWidth
Width of the border of the path.

strokeStyle
Color of the border.

fillStyle
Color of the fill (interior) of the shape created with the path.

font
The font and size of the text.

Of course, the Canvas API includes many more functions and attributes than
we’ve used here. For a complete list, see the W3C’s HTML5 Canvas 2D
Context specification at dev.w3.org/html5/2dcontext/. A web search will turn
up lots of canvas tutorials should you be ready to learn more. In addition, I
can recommend these resources:

•	 The book HTML5 Canvas by Steve Fulton and Jeff Fulton (O’Reilly
Media)

•	 Or if watching a video is more your speed, try this tutorial: Client-side
Graphics with HTML5 Canvases: An O’Reilly Breakdown (shop.oreilly.
com/product/0636920016502.do)

Final Word
By now you should have a good idea of what’s up with HTML5. We’ve
looked at new elements for adding improved semantics to documents. You
got a whirlwind tour of the various APIs in development that will move some
useful functionality into the native browser behavior. You learned how to
use the video and audio elements to embed media on the page (plus a primer
on media formats). And finally, you got a peek at the canvas element.

In the next part of this book, CSS for Presentation, you’ll learn how to write
style sheets that customize the look of the page, including text styles, colors,
backgrounds, and even page layout. Goodbye, default browser styles!

Test Yourself

Chapter 10, What’s Up, HTML5? 203

Test Yourself
Let’s see if you were paying attention. These questions should test whether
you got the important highlights of this chapter. Good luck! And as always,
the answers are in Appendix A.

1. What is the difference between HTML and XHTML?

2. Using the XHTML Markup Requirements sidebar as a guide, rewrite
these HTML elements in XHTML syntax.

a. <H1> … </H1>

b.

c. <input type="radio" checked>

d. <hr>

e. <title>Sifl & Olly</title>

f.
 popcorn
 butter
 salt

3. What is a DTD?

4. Name at least three ways that HTML5 is unique as a specification.

5. What is a “global attribute”?

	Part II: HTML Markup for Structure
	HTML Markup for Structure
	Chapter 4: Creating a Simple Page
	A Web Page, Step by Step
	Before We Begin, Launch a Text Editor
	Step 1: Start with Content
	Step 2: Give the Document Structure
	Step 3: Identify Text Elements
	Step 4: Add an Image
	Step 5: Change the Look
with a Style Sheet
	When Good Pages Go Bad
	Validating Your Documents
	Test Yourself
	Element Review: Document Structure

	Chapter 5: Marking Up Text
	Paragraphs
	Headings
	Lists
	More Content Elements
	Organizing Page Content
	The Inline Element Roundup
	Generic Elements (div and span)
	Some Special Characters
	Putting It All Together
	Test Yourself
	Element Review: Text

	Chapter 6: Adding Links
	The href Attribute
	Linking to Pages on the Web
	Linking Within Your Own Site
	Targeting a New Browser Window
	Mail Links
	Telephone Links
	Test Yourself
	Element Review: Links

	Chapter 7: Adding Images
	First, a Word on Image Formats
	The img Element
	A Window in a Window
	Test Yourself
	Element Review: Images

	Chapter 8: Table Markup
	How Tables Are Used
	Minimal Table Structure
	Spanning Cells
	Table Accessibility
	Wrapping Up Tables
	Test Yourself
	Element Review: Tables

	Chapter 9: Forms
	How Forms Work
	The form Element
	Variables and Content
	The Great Form Control Roundup
	Form Accessibility Features
	Form Layout and Design
	Test Yourself
	Element Review: Forms

	Chapter 10: What’s Up, HTML5?
	A Funny Thing Happened on the
Way to XHTML 2
	In the Markup Department
	Meet the APIs
	Video and Audio
	Canvas
	Final Word
	Test Yourself

